COMPARISON OF TWO-TANK INDIRECT THERMAL STORAGE DESIGNS FOR SOLAR PARABOLIC TROUGH POWER PLANTS

被引:0
|
作者
Kopp, Joseph [1 ]
Boehm, R. F. [1 ]
机构
[1] Univ Nevada, Dept Mech Engn, Las Vegas, NV 89154 USA
关键词
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy from the sun into steam. An indirect two-tank molten salt storage system that only transfers heat with the solar field heat transfer fluid is the most commercially acceptable thermal storage design. Annual electricity generation from two differing indirect two-tank molten salt storage designs and a base case with no thermal storage were modeled. Four components were characterized in a quasi-steady state analysis dependent upon key ambient and operational parameters: solar field, storage, heat exchangers, and power block. The parameters for the collector field remained constant for all models and were based on the SEGS VI plant. The results of net power generation favor storage though the design that maximizes annual output depends on whether maximum power generation or power generation during the evening peak demand hours is desired. Additionally, the economic trade offs are discussed for the three arrangements.
引用
收藏
页码:683 / 688
页数:6
相关论文
共 50 条
  • [1] Two-tank molten salt storage for parabolic trough solar power plants
    Herrmann, U
    Kelly, B
    Price, H
    [J]. ENERGY, 2004, 29 (5-6) : 883 - 893
  • [2] Optimal Design of a Molten Salt Thermal Storage Tank for Parabolic Trough Solar Power Plants
    Gabbrielli, R.
    Zamparelli, C.
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2009, 131 (04): : 0410011 - 04100110
  • [3] Design of a 25MWe Solar Thermal Power Plant in Iran with Using Parabolic Trough Collectors and a Two-Tank Molten Salt Storage System
    Kordmahaleh, Aidin Alinezhad
    Naghashzadegan, Mohammad
    Javaherdeh, Kourosh
    Khoshgoftar, Mohammadreza
    [J]. INTERNATIONAL JOURNAL OF PHOTOENERGY, 2017, 2017
  • [4] Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data
    Llorente Garcia, Isabel
    Luis Alvarez, Jose
    Blanco, Daniel
    [J]. SOLAR ENERGY, 2011, 85 (10) : 2443 - 2460
  • [5] Performance comparison of two-tank direct and thermocline thermal energy storage systems for 1 MWe class concentrating solar power plants
    Cocco, Daniele
    Serra, Fabio
    [J]. ENERGY, 2015, 81 : 526 - 536
  • [6] The CellFlux storage concept for cost reduction in parabolic trough solar thermal power plants
    Odenthal, Christian
    Steinmann, Wolf-Dieter
    Eck, Markus
    Laing, Doerte
    [J]. 8TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE AND EXHIBITION (IRES 2013), 2014, 46 : 142 - 151
  • [7] LIFE CYCLE ASSESSMENT OF THERMAL ENERGY STORAGE: TWO-TANK INDIRECT AND THERMOCLINE
    Heath, Garvin
    Turchi, Craig
    Decker, Terese
    Burkhardt, John
    Kutscher, Chuck
    [J]. ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 689 - 690
  • [8] Survey of thermal energy storage for parabolic trough power plants
    Herrmann, U
    Kearney, DW
    [J]. JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2002, 124 (02): : 145 - 152
  • [9] Solid media thermal storage for parabolic trough power plants
    Laing, Doerte
    Steinmann, Wolf-Dieter
    Tamme, Rainer
    Richter, Christoph
    [J]. SOLAR ENERGY, 2006, 80 (10) : 1283 - 1289
  • [10] Analytic modeling of parabolic trough solar thermal power plants
    Salazar, German A.
    Fraidenraich, Naum
    Alves de Oliveira, Carlos Antonio
    Vilela, Olga de Castro
    Hongn, Marcos
    Gordon, Jeffrey M.
    [J]. ENERGY, 2017, 138 : 1148 - 1156