FOREX Rate Prediction using Chaos and Quantile Regression Random Forest

被引:0
|
作者
Pradeepkumar, Dadabada [1 ,2 ]
Ravi, Vadlamani [2 ]
机构
[1] Univ Hyderabad, SCIS, Hyderabad 500046, Andhra Pradesh, India
[2] Inst Dev & Res Banking Technol, Ctr Excellence Analyt, Castle Hills Rd 1, Hyderabad 500057, Andhra Pradesh, India
关键词
FOREX Rate Prediction; Hybrid model; chaos; QR; RF; QRRF;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a hybrid of chaos modeling and Quantile Regression Random Forest (QRRF) for Foreign Exchange (FOREX) Rate prediction. The exchange rates data of US Dollar (USD) versus Japanese Yen (JPY), British Pound (GBP), and Euro (EUR) are used to test the efficacy of proposed model. Based on the experiments conducted, we conclude that the proposed model yielded accurate predictions compared to Chaos + Quantile Regression (QR), Chaos+Random Forest (RF) and that of Pradeepkumar and Ravi [12] in terms of both Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE).
引用
收藏
页码:517 / 522
页数:6
相关论文
共 50 条
  • [1] FOREX Rate Prediction: A Hybrid Approach Using Chaos Theory and Multivariate Adaptive Regression Splines
    Pradeepkumar, Dadabada
    Ravi, Vadlamani
    [J]. PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, FICTA 2016, VOL 1, 2017, 515 : 219 - 227
  • [2] FOREX Rate Prediction Using Chaos, Neural Network and Particle Swarm Optimization
    Pradeepkumar, Dadabada
    Ravi, Vadlamani
    [J]. ADVANCES IN SWARM INTELLIGENCE, ICSI 2014, PT II, 2014, 8795 : 363 - 375
  • [3] Prediction Intervals via Support Vector-quantile Regression Random Forest Hybrid
    Ravi, Vadlamani
    Tejasviram, Vadali
    Sharma, Anurag
    Khansama, Rashmi Ranjan
    [J]. COMPUTE'17: PROCEEDINGS OF THE 10TH ANNUAL ACM INDIA COMPUTE CONFERENCE, 2017, : 109 - 113
  • [4] Comparison of Accuracy Rate in Prediction of Cardiovascular Disease using Random Forest with Logistic Regression
    Vishnuvardhan, Talluri
    Rama, A.
    [J]. CARDIOMETRY, 2022, (25): : 1526 - 1531
  • [5] RATE OF PENETRATION PREDICTION USING QUANTILE REGRESSION DEEP NEURAL NETWORKS
    Ambrus, Adrian
    Alyaev, Sergey
    Jahani, Nazanin
    Pacis, Felix James
    Wiktorski, Tomasz
    [J]. PROCEEDINGS OF ASME 2022 41ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE & ARCTIC ENGINEERING, OMAE2022, VOL 10, 2022,
  • [6] Wind Turbine Noise Prediction Using Random Forest Regression
    Iannace, Gino
    Ciaburro, Giuseppe
    Trematerra, Amelia
    [J]. MACHINES, 2019, 7 (04)
  • [7] Restaurant Queuing Time Prediction Using Random Forest Regression
    Xue, Yijia
    Zhang, Xiang
    [J]. 2022 12TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS (ICPRS), 2022,
  • [8] Quantile Regression Random Forest Hybrids based Data Imputation
    Yadav, Manish
    Ravi, Vadlamani
    [J]. PROCEEDINGS OF 2018 IEEE 17TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2018), 2018, : 195 - 201
  • [9] Spatial prediction of soil depth using environmental covariates by quantile regression forest model
    Lalitha, M.
    Dharumarajan, S.
    Suputhra, Amar
    Kalaiselvi, B.
    Hegde, Rajendra
    Reddy, RS.
    Prasad, CR. Shiva
    Harindranath, CS.
    Dwivedi, BS.
    [J]. ENVIRONMENTAL MONITORING AND ASSESSMENT, 2021, 193 (10)
  • [10] Spatial prediction of soil depth using environmental covariates by quantile regression forest model
    M. Lalitha
    S. Dharumarajan
    Amar Suputhra
    B. Kalaiselvi
    Rajendra Hegde
    RS. Reddy
    CR. Shiva Prasad
    CS. Harindranath
    BS. Dwivedi
    [J]. Environmental Monitoring and Assessment, 2021, 193