Stability Threshold for Scalar Linear Periodic Delay Differential Equations

被引:2
|
作者
Nah, Kyeongah [1 ]
Roest, Gergely [1 ]
机构
[1] Univ Szeged, Bolyai Inst, Aradi Vertanuk Tere 1, H-6720 Szeged, Hungary
基金
匈牙利科学研究基金会; 欧洲研究理事会;
关键词
delay differential equation; stability; periodic system; DYNAMICS; MODEL;
D O I
10.4153/CMB-2016-043-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for the linear scalar delay differential equation (x) over dot(t) = -a (t)x (t) + b(t)x(t-1) with non-negative periodic coefficients of period P > 0, the stability threshold for the trivial solution is r := integral(P)(0)(b(t)-a(t))dt = 0, assuming that b(t+1) - a (t) does not change its sign. By constructing a class of explicit examples, we show the counter-intuitive result that, in general, r = 0 is not a stability threshold.
引用
收藏
页码:849 / 857
页数:9
相关论文
共 50 条