Considering the complexity of landslide hazards, their manual investigation lacks efficiency and is time-consuming, especially in high-altitude plateau areas. Therefore, extracting landslide information using remote sensing technology has great advantages. In this study, comprehensive research was carried out on the landslide features of high-resolution remote sensing images on the Mangkam dataset. Based on the idea of feature-driven classification, the landslide extraction model of a fully convolutional spectral-topographic fusion network (FSTF-Net) based on a deep convolutional neural network of multi-source data fusion is proposed, which takes into account the topographic factor (slope and aspect) and the normalized difference vegetation index (NDVI) as multi-source data input by which to train the model. In this paper, a high-resolution remote sensing image classification method based on a fully convolutional network was used to extract the landslide information, thereby realizing the accurate extraction of the landslide and surrounding ground-object information. With Mangkam County in the southeast of the Qinghai-Tibet Plateau China as the study area, the proposed method was evaluated based on the high-precision digital elevation model (DEM) generated from stereoscopic images of Resources Satellite-3 and multi-source high-resolution remote sensing image data (Beijing-2, Worldview-3, and SuperView-1). Results show that our method had a landslide detection precision of 0.85 and an overall classification accuracy of 0.89. Compared with the latest DeepLab_v3+, our model increases the landslide detection precision by 5%. Thus, the proposed FSTF-Net model has high reliability and robustness.