GSGP-CUDA-A CUDA framework for Geometric Semantic Genetic Programming

被引:8
|
作者
Trujillo, Leonardo [1 ]
Munoz Contreras, Jose Manuel [1 ]
Hernandez, Daniel E. [1 ]
Castelli, Mauro [2 ]
Tapia, Juan J. [3 ]
机构
[1] Tecnol Nacl Mexico IT Tijuana, Calzada Tecnol S-N, Tijuana 22414, BC, Mexico
[2] Univ Nova Lisboa, NOVA Informat Management Sch NOVA IMS, Campus Campolide, P-1070312 Lisbon, Portugal
[3] Inst Politecn Nacl CITEDI, Av Inst Politecn Nacl 1310, Tijuana 22435, BC, Mexico
关键词
Genetic Programming; Geometric Semantic Genetic Programming; CUDA; GPU; RESIDENTIAL BUILDINGS; ENERGY PERFORMANCE;
D O I
10.1016/j.softx.2022.101085
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Geometric Semantic Genetic Programming (GSGP) is a state-of-the-art machine learning method based on evolutionary computation. GSGP performs search operations directly at the level of program semantics, which can be done more efficiently than operating at the syntax level like most GP systems. Efficient implementations of GSGP in C++ exploit this fact, but not to its full potential. This paper presents GSGP-CUDA, the first CUDA implementation of GSGP and the most efficient, which exploits the intrinsic parallelism of GSGP using GPUs. Results show speedups greater than 1, 000?? relative to the state-of-the-art sequential implementation, during the model training process. Additionally, our implementation allows the user to seamlessly make inferences over new data through the best evolved model, opening the possibility of using GSGP on Big Data problems. ?? 2022 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:7
相关论文
共 50 条
  • [1] GSGP-C++ 2.0: A geometric semantic genetic programming framework
    Castelli, Mauro
    Manzoni, Luca
    [J]. SOFTWAREX, 2019, 10
  • [2] SLIM_GSGP: The Non-bloating Geometric Semantic Genetic Programming
    Vanneschi, Leonardo
    [J]. GENETIC PROGRAMMING, EUROGP 2024, 2024, 14631 : 125 - 141
  • [3] A Many Threaded CUDA Interpreter for Genetic Programming
    Langdon, W. B.
    [J]. GENETIC PROGRAMMING, PROCEEDINGS, 2010, 6021 : 146 - 158
  • [4] GSGP-hardware: instantaneous symbolic regression with an FPGA implementation of geometric semantic genetic programming
    Maldonado, Yazmin
    Salas, Ruben
    Quevedo, Joel A.
    Valdez, Rogelio
    Trujillo, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2024, 25 (02)
  • [5] Geometric algorithms on CUDA
    Rueda, Antonio J.
    Ortega, Lidia
    [J]. GRAPP 2008: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS THEORY AND APPLICATIONS, 2008, : 107 - 112
  • [6] Improving CUDA DNA Analysis Software with Genetic Programming
    Langdon, William B.
    Lam, Brian Yee Hong
    Petke, Justyna
    Harman, Mark
    [J]. GECCO'15: PROCEEDINGS OF THE 2015 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2015, : 1063 - 1070
  • [7] A C++ framework for geometric semantic genetic programming
    Mauro Castelli
    Sara Silva
    Leonardo Vanneschi
    [J]. Genetic Programming and Evolvable Machines, 2015, 16 : 73 - 81
  • [8] A CUDA programming toolkit on grids
    Liang, Tyng-Yeu
    Chang, Yu-Wei
    Li, Hung-Fu
    [J]. INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING, 2012, 3 (2-3) : 97 - 111
  • [9] A C plus plus framework for geometric semantic genetic programming
    Castelli, Mauro
    Silva, Sara
    Vanneschi, Leonardo
    [J]. GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2015, 16 (01) : 73 - 81
  • [10] Structural testing for CUDA programming model
    Luz, Helder J. F.
    Souza, Paulo S. L.
    Souza, Simone R. S.
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (14):