Partial Theta Function and Separation in Modulus Property of its Zeros

被引:0
|
作者
Kostov, Vladimir Petrov [1 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, Nice, France
关键词
Partial theta function; Separation in modulus; Spectrum; SPECTRUM;
D O I
10.1007/s10013-019-00376-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the partial theta function theta(q, z) := Sigma(infinity)(j=0) q(j (j+1))/2z(j), where z is an element of C is a variable and q is an element of C, 0 < vertical bar q vertical bar < 1, is a parameter. Set D(a) := {q is an element of C, 0 < vertical bar q vertical bar <= a, arg( q). [pi/2, 3 pi/2]}. We show that for k is an element of N and q is an element of D(0.55), there exists exactly one zero of theta(q, center dot) (which is a simple one) in the open annulus vertical bar q vertical bar(-k+1/2) < z < vertical bar q vertical bar(-k-1/2) (if k >= 2) or in the punctured disk 0 < z < vertical bar q vertical bar|(-3/2) (if k = 1). For k not equal 2, 3, this holds true for q is an element of D(0.6) as well.
引用
收藏
页码:145 / 157
页数:13
相关论文
共 50 条