Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100

被引:52
|
作者
Qiu, Yang [1 ,2 ]
Lamers, Patrick [1 ]
Daioglou, Vassilis [3 ,4 ]
McQueen, Noah [5 ]
de Boer, Harmen-Sytze [4 ]
Harmsen, Mathijs [3 ,4 ]
Wilcox, Jennifer [5 ]
Bardow, Andre [6 ,7 ]
Suh, Sangwon [2 ]
机构
[1] Natl Renewable Energy Lab, 15013 Denver W Pkwy, Denver, CO 80401 USA
[2] 2400 Univ Calif, Bren Sch Environm Sci & Management, Santa Barbara, CA 93117 USA
[3] Univ Utrecht, Copernicus Inst Sustainable Dev, Princetonlaan 8a, NL-3584 CS Utrecht, Netherlands
[4] PBL Netherlands Environm Assessment Agcy, POB 30314, NL-2500 GH The Hague, Netherlands
[5] Univ Penn, Chem & Biomol Engn Dept, Philadelphia, PA 19104 USA
[6] Forschungszentrum Julich, Inst Energy & Climate Res Energy Syst Engn IEK 10, Julich, Germany
[7] Swiss Fed Inst Technol, Energy & Proc Syst Engn, CH-8092 Zurich, Switzerland
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
LIFE-CYCLE ASSESSMENT; CARBON-DIOXIDE; CO2; CAPTURE; INTEGRATED ASSESSMENT; ENERGY; STORAGE; IMPACT; EMISSIONS; FRAMEWORK; BIOMASS;
D O I
10.1038/s41467-022-31146-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Direct air capture (DAC) is critical for achieving stringent climate targets, yet the environmental implications of its large-scale deployment have not been evaluated in this context. Performing a prospective life cycle assessment for two promising technologies in a series of climate change mitigation scenarios, we find that electricity sector decarbonization and DAC technology improvements are both indispensable to avoid environmental problem-shifting. Decarbonizing the electricity sector improves the sequestration efficiency, but also increases the terrestrial ecotoxicity and metal depletion levels per tonne of CO2 sequestered via DAC. These increases can be reduced by improvements in DAC material and energy use efficiencies. DAC exhibits regional environmental impact variations, highlighting the importance of smart siting related to energy system planning and integration. DAC deployment aids the achievement of long-term climate targets, its environmental and climate performance however depend on sectoral mitigation actions, and thus should not suggest a relaxation of sectoral decarbonization targets. New study concludes that environmental tradeoffs of direct air capture and sequestration technologies are linked to the energy system in which they will operate, and their deployment should not equate to a relaxation of decarbonization or resource use efficiency targets.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100
    Yang Qiu
    Patrick Lamers
    Vassilis Daioglou
    Noah McQueen
    Harmen-Sytze de Boer
    Mathijs Harmsen
    Jennifer Wilcox
    André Bardow
    Sangwon Suh
    [J]. Nature Communications, 13
  • [2] Afforestation for climate change mitigation: Potentials, risks and trade-offs
    Doelman, Jonathan C.
    Stehfest, Elke
    van Vuuren, Detlef P.
    Tabeau, Andrzej
    Hof, Andries F.
    Braakhekke, Maarten C.
    Gernaat, David E. H. J.
    van den Berg, Maarten
    van Zeist, Willem-Jan
    Daioglou, Vassilis
    van Meijl, Hans
    Lucas, Paul L.
    [J]. GLOBAL CHANGE BIOLOGY, 2020, 26 (03) : 1576 - 1591
  • [3] Balancing clean water-climate change mitigation trade-offs
    Parkinson, Simon
    Krey, Volker
    Huppmann, Daniel
    Kahil, Taher
    McCollum, David
    Fricko, Oliver
    Byers, Edward
    Gidden, Matthew J.
    Mayor, Beatriz
    Khan, Zarrar
    Raptis, Catherine
    Rao, Narasimha D.
    Johnson, Nils
    Wada, Yoshihide
    Djilali, Ned
    Riahi, Keywan
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2019, 14 (01):
  • [4] Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
    Madhu, Kavya
    Pauliuk, Stefan
    Dhathri, Sumukha
    Creutzig, Felix
    [J]. NATURE ENERGY, 2021, 6 (11) : 1035 - 1044
  • [5] Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
    Kavya Madhu
    Stefan Pauliuk
    Sumukha Dhathri
    Felix Creutzig
    [J]. Nature Energy, 2021, 6 : 1035 - 1044
  • [6] Addendum to: Understanding environmental trade-offs and resource demand of direct air capture technologies through comparative life-cycle assessment
    Kavya Madhu
    Stefan Pauliuk
    Sumukha Dhathri
    Felix Creutzig
    [J]. Nature Energy, 2023, 8 : 901 - 902
  • [7] Climate change mitigation: trade-offs between delay and strength of action required
    Naomi E. Vaughan
    Timothy M. Lenton
    John G. Shepherd
    [J]. Climatic Change, 2009, 96 : 29 - 43
  • [8] Climate change mitigation: trade-offs between delay and strength of action required
    Vaughan, Naomi E.
    Lenton, Timothy M.
    Shepherd, John G.
    [J]. CLIMATIC CHANGE, 2009, 96 (1-2) : 29 - 43
  • [9] Integrating climate change mitigation and adaptation in agriculture and forestry: opportunities and trade-offs
    Locatelli, Bruno
    Pavageau, Charlotte
    Pramova, Emilia
    Di Gregorio, Monica
    [J]. WILEY INTERDISCIPLINARY REVIEWS-CLIMATE CHANGE, 2015, 6 (06) : 585 - 598
  • [10] Climate mitigation forestry-temporal trade-offs
    Skytt, Torbjorn
    Englund, Goran
    Jonsson, Bengt-Gunnar
    [J]. ENVIRONMENTAL RESEARCH LETTERS, 2021, 16 (11)