Linear and nonlinear PSE for stability analysis of the blasius boundary layer using compact scheme

被引:16
|
作者
Esfahanian, V [1 ]
Hejranfar, K
Sabetghadam, F
机构
[1] Univ Tehran, Dept Mech Engn, Tehran, Iran
[2] Azad Univ, Sci & Res Fac, Tehran, Iran
关键词
D O I
10.1115/1.1385833
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
A highly accurate finite-difference PSE code has been developed to investigate the stability analysis of incompressible boundary layers over a flat plate. The PSE equations are derived in terms of primitive variables and are solved numerically by using compact method. In these formulations, both nonparallel as well as nonlinear effects are accounted for. The validity of present numerical scheme is demonstrated using spatial simulations of two cases; two-dimensional (linear and nonlinear) Tollinien-Schlichting wave propagation and three-dimensional subharmonic instability breakdown. ne PSE solutions have been compared with previous numerical investigations and experimental results and show good agreement.
引用
收藏
页码:545 / 550
页数:6
相关论文
共 50 条
  • [1] LINEAR AND NONLINEAR STABILITY OF THE BLASIUS BOUNDARY-LAYER
    BERTOLOTTI, FP
    HERBERT, T
    SPALART, PR
    [J]. JOURNAL OF FLUID MECHANICS, 1992, 242 : 441 - 474
  • [2] Nonlinear stability of a boundary layer in incompressible flow using the PSE approach
    Salinas, H
    Casalis, G
    [J]. COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 541 - 546
  • [3] Numerical Analysis of Nonlinear Stability of Two-phase Flow in the Blasius Boundary Layer
    Xie, M. L.
    Chan, T. L.
    Zhang, Y. D.
    Zhou, H. C.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2008, 9 (04) : 423 - 434
  • [4] LINEAR STABILITY OF QUASIPARALLEL FLOWS .2. BLASIUS BOUNDARY-LAYER
    BOUTHIER, M
    [J]. JOURNAL DE MECANIQUE, 1973, 12 (01): : 75 - 95
  • [5] EXPERIMENTS ON STABILITY OF BLASIUS BOUNDARY-LAYER
    SARIC, WS
    REYNOLDS, GA
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (08): : 994 - 994
  • [6] Far downstream analysis for the blasius boundary-layer stability problem
    Turner, M. R.
    [J]. QUARTERLY JOURNAL OF MECHANICS AND APPLIED MATHEMATICS, 2007, 60 : 255 - 274
  • [7] LINEAR AND NONLINEAR LAMINAR BOUNDARY-LAYER STABILITY USING THE PARABOLIZED STABILITY EQUATIONS
    AIRIAU, C
    CASALIS, G
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1994, 318 (10): : 1295 - 1300
  • [8] On the stability of a Blasius boundary layer subject to localised suction
    Brynjell-Rahkola, Mattias
    Hanifi, Ardeshir
    Henningson, Dan S.
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 871 : 717 - 741
  • [9] Transition control of the blasius boundary layer using linear robust control theory
    Damaren C.J.
    [J]. Aerospace Systems, 2024, 7 (02) : 279 - 292
  • [10] Algebraic growth in a Blasius boundary layer: Nonlinear optimal disturbances
    Zuccher, S
    Bottaro, A
    Luchini, P
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2006, 25 (01) : 1 - 17