Abelian and non-Abelian considerations on compressible fluids with Maxwell-type equations and minimal coupling with the electromagnetic field

被引:19
|
作者
Abreu, Everton M. C. [1 ,2 ]
Neto, Jorge Ananias [2 ]
Mendes, Albert C. R. [2 ]
Sasaki, Nelio [2 ,3 ]
机构
[1] Univ Fed Rural Rio de Janeiro, Dept Fis, Grp Fis Teor & Matemat Fis, BR-23890971 Rio De Janeiro, Brazil
[2] Univ Fed Juiz de Fora, Dept Fis, BR-36036330 Juiz De Fora, MG, Brazil
[3] Univ Estado Amazonas, Nucleo Ensino & Pesquisa Astron, BR-69152470 Parintins, Amazonas, Brazil
来源
PHYSICAL REVIEW D | 2015年 / 91卷 / 12期
关键词
TRANSPORT-THEORY;
D O I
10.1103/PhysRevD.91.125011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this work, we have obtained Maxwell-type equations for a compressible fluid whose sources are functions of velocity and vorticity. A correlation function and the dispersion relation were analyzed as functions of the Reynolds number. A Lagrangian for the Lamb vector and the vorticity was constructed, and the equations of motion were discussed. After that, we have analyzed the case of a charged fluid dynamics. Finally, the non-Abelian generalization of some results was introduced. A basic review for non-Abelian fluids was described in Appendix B.
引用
收藏
页数:12
相关论文
共 33 条
  • [1] Compressible fluids with Maxwell-type equations, the minimal coupling with electroMagnetic field and the Stefan-Boltzmann law
    Mendes, Albert C. R.
    Takakura, Flavio I.
    Abreu, Everton M. C.
    Ananias Neto, Jorge
    ANNALS OF PHYSICS, 2017, 380 : 12 - 22
  • [2] Relativistic dynamics for a particle carrying a non-Abelian charge in a non-Abelian background electromagnetic field
    Dossa, Finagnon A.
    Avossevou, Gabriel Y. H.
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (02)
  • [3] NON-ABELIAN VECTOR GAUGE FIELDS + ELECTROMAGNETIC FIELD
    SCHWINGER, J
    REVIEWS OF MODERN PHYSICS, 1964, 36 (02) : 609 - &
  • [4] DIFFERENTIAL SUBSTITUTIONS FOR NON-ABELIAN EQUATIONS OF KDV TYPE
    Adler, V. E.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 107 - 114
  • [5] Kinetic equations for massive Dirac fermions in electromagnetic field with non-Abelian Berry phase
    Chen, Jiunn-Wei
    Pang, Jin-yi
    Pu, Shi
    Wang, Qun
    PHYSICAL REVIEW D, 2014, 89 (09):
  • [6] Non-abelian gauge groups for real and complex amended Maxwell's equations
    Rauscher, EA
    GRAVITATION AND COSMOLOGY: FROM THE HUBBLE RADIUS TO THE PLANCK SCALE, 2002, 126 : 183 - 188
  • [7] APPROXIMATE RADIATIVE SOLUTIONS TO EQUATIONS OF NON-ABELIAN GAUGE FIELD
    KERNER, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (15): : 1185 - &
  • [8] EXACT SOLUTIONS OF EQUATIONS OF CLASSIC NON-ABELIAN STANDARD FIELD
    KERNER, R
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1970, 270 (22): : 1467 - &
  • [9] Non-Abelian field theory applied to electrodynamics: development of the field equations
    Anon
    Journal of New Energy, 1999, 4 (03): : 117 - 129
  • [10] Amending Maxwell's Equations for Real and Complex Gauge Groups in Non-Abelian Form
    Rauscher, Elizabeth A.
    Amoroso, Richard L.
    SEARCH FOR FUNDAMENTAL THEORY, 2010, 1316 : 180 - 184