Li-Yorke chaos for invertible mappings on noncompact spaces

被引:5
|
作者
Hou, Bingzhe [1 ]
Luo, Lvlin [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun, Peoples R China
关键词
Invertible dynamical systems; Li-Yorke chaos; noncompact spaces; topological conjugacy; LINEAR-OPERATORS;
D O I
10.3906/mat-1504-11
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give two examples to show that an invertible mapping being Li-Yorke chaotic does not imply its inverse being Li-Yorke chaotic, in which one is an invertible bounded linear operator on an infinite dimensional Hilbert space and the other is a homeomorphism on the unit open disk. Moreover, we use the last example to prove that Li-Yorke chaos is not preserved under topological conjugacy.
引用
收藏
页码:411 / 416
页数:6
相关论文
共 50 条
  • [1] Li-Yorke chaos for invertible mappings on compact metric spaces
    Luo, Lvlin
    Hou, Bingzhe
    ARCHIV DER MATHEMATIK, 2017, 108 (01) : 65 - 69
  • [2] Unimodal mappings and Li-Yorke chaos
    Dobrynskii, VA
    MATHEMATICAL NOTES, 1998, 63 (5-6) : 598 - 607
  • [3] Li–Yorke chaos for invertible mappings on compact metric spaces
    Lvlin Luo
    Bingzhe Hou
    Archiv der Mathematik, 2017, 108 : 65 - 69
  • [4] Unimodal mappings and Li-Yorke chaos
    V. A. Dobrynskii
    Mathematical Notes, 1998, 63 : 598 - 607
  • [5] LI-YORKE CHAOS FOR ULTRAGRAPH SHIFT SPACES
    Goncalves, Daniel
    Uggioni, Bruno Brogni
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (04) : 2347 - 2365
  • [6] Mean Li-Yorke chaos in Banach spaces
    Bernardes, N. C., Jr.
    Bonilla, A.
    Peris, A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (03)
  • [7] TRANSITIVITY, ENTROPY AND LI-YORKE CHAOS OF MULTIPLE MAPPINGS
    Zhao, Yingcui
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2024, 86 (02): : 85 - 96
  • [8] TRANSITIVITY, ENTROPY AND LI-YORKE CHAOS OF MULTIPLE MAPPINGS
    Zhao, Yingcui
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2024, 86 (02): : 85 - 96
  • [9] Li-Yorke sensitivity does not imply Li-Yorke chaos
    Hantakova, Jana
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2019, 39 : 3066 - 3074
  • [10] Li-Yorke chaos for composition operators on Orlicz spaces
    Estaremi, Yousef
    Muhammad, Shah
    FORUM MATHEMATICUM, 2024, 36 (04) : 973 - 981