Transparent Exploration of Machine Learning for Biomarker Discovery from Proteomics and Omics Data

被引:14
|
作者
Torun, Furkan M. [1 ]
Winter, Sebastian Virreira [1 ]
Doll, Sophia [1 ]
Riese, Felix M. [1 ]
Vorobyev, Artem [1 ]
Mueller-Reif, Johannes B. [1 ]
Geyer, Philipp E. [1 ]
Strauss, Maximilian T. [2 ]
机构
[1] OmicEra Diagnost GmbH, D-82152 Planegg, Germany
[2] Univ Copenhagen, Novo Nordisk Fdn, Ctr Prot Res, DK-2200 Copenhagen, Denmark
关键词
machine learning; mass spectrometry; diagnostics; omics; proteome; metabolome; transcriptome;
D O I
10.1021/acs.jproteome.2c00473
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Biomarkers are of central importance for assessing the health state and to guide medical interventions and their efficacy; still, they are lacking for most diseases. Mass spectrometry (MS)-based proteomics is a powerful technology for biomarker discovery but requires sophisticated bioinformatics to identify robust patterns. Machine learning (ML) has become a promising tool for this purpose. However, it is sometimes applied in an opaque manner and generally requires specialized knowledge. To enable easy access to ML for biomarker discovery without any programming or bioinformatics skills, we developed "OmicLearn " (http://OmicLearn.org), an open-source browser-based ML tool using the latest advances in the Python ML ecosystem. Data matrices from omics experiments are easily uploaded to an online or a locally installed web server. OmicLearn enables rapid exploration of the suitability of various ML algorithms for the experimental data sets. It fosters open science via transparent assessment of state-of-the-art algorithms in a standardized format for proteomics and other omics sciences.
引用
收藏
页码:359 / 367
页数:9
相关论文
共 50 条
  • [1] Editorial: Leveraging machine learning for omics-driven biomarker discovery
    Li, Sheng
    Hsu, Charles
    Zhao, Tianyi
    He, Liangcan
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 9
  • [2] Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review
    Glaab, Enrico
    Rauschenberger, Armin
    Banzi, Rita
    Gerardi, Chiara
    Garcia, Paula
    Demotes, Jacques
    [J]. BMJ OPEN, 2021, 11 (12):
  • [3] ProfileDB: A resource for proteomics and cross-omics biomarker discovery
    Bauer, Chris
    Glintschert, Alexander
    Schuchhardt, Johannes
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2014, 1844 (05): : 960 - 966
  • [4] Machine Learning for Biomarker Discovery in Cancer Pharmacogenomics Data
    Mer, Arvind Singh
    Smirnov, Petr
    Haibe-Kains, Benjamin
    [J]. ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 557 - 557
  • [5] Applying bioinformatics to proteomics: Is machine learning the answer to biomarker discovery for PD and MSA?
    Mattison, Hayley A.
    Stewart, Tessandra
    Zhang, Jing
    [J]. MOVEMENT DISORDERS, 2012, 27 (13) : 1595 - 1597
  • [6] "Omics" data and levels of evidence for biomarker discovery
    Ghosh, Debashis
    Poisson, Laila M.
    [J]. GENOMICS, 2009, 93 (01) : 13 - 16
  • [7] A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data
    Anna L Swan
    Dov J Stekel
    Charlie Hodgman
    David Allaway
    Mohammed H Alqahtani
    Ali Mobasheri
    Jaume Bacardit
    [J]. BMC Genomics, 16
  • [8] A machine learning heuristic to identify biologically relevant and minimal biomarker panels from omics data
    Swan, Anna L.
    Stekel, Dov J.
    Hodgman, Charlie
    Allaway, David
    Algahtani, Mohammed H.
    Mobasheri, Ali
    Bacardit, Jaume
    [J]. BMC GENOMICS, 2015, 16
  • [9] Combining Deep Phenotyping of Serum Proteomics and Clinical Data via Machine Learning for COVID-19 Biomarker Discovery
    Beltrami, Antonio Paolo
    De Martino, Maria
    Dalla, Emiliano
    Malfatti, Matilde Clarissa
    Caponnetto, Federica
    Codrich, Marta
    Stefanizzi, Daniele
    Fabris, Martina
    Sozio, Emanuela
    D'Aurizio, Federica
    Pucillo, Carlo E. M.
    Sechi, Leonardo A.
    Tascini, Carlo
    Curcio, Francesco
    Foresti, Gian Luca
    Piciarelli, Claudio
    De Nardin, Axel
    Tell, Gianluca
    Isola, Miriam
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [10] A Proteomics and other Omics approach in the context of farmed fish welfare and biomarker discovery
    Ferreira Raposo de Magalhaes, Claudia Sofia
    Cavaco Cerqueira, Marco Alexandre
    Schrama, Denise
    Vicente Moreira, Marcio Julio
    Boonanuntanasarn, Surintorn
    Leal Rodrigues, Pedro Miguel
    [J]. REVIEWS IN AQUACULTURE, 2020, 12 (01) : 122 - 144