Fused Filament Fabrication of Short Glass Fiber-Reinforced Polylactic Acid Composites: Infill Density Influence on Mechanical and Thermal Properties

被引:13
|
作者
Chicos, Lucia-Antoneta [1 ]
Pop, Mihai Alin [2 ]
Zaharia, Sebastian-Marian [1 ]
Lancea, Camil [1 ]
Buican, George Razvan [1 ]
Pascariu, Ionut Stelian [1 ]
Stamate, Valentin-Marian [1 ]
机构
[1] Transilvania Univ Brasov, Dept Mfg Engn, Brasov 500036, Romania
[2] Transilvania Univ Brasov, Dept Mat Sci, Brasov 500036, Romania
关键词
material extrusion; fused filament fabrication; unmanned aerial vehicle; mechanical properties; infill density; thermal properties; PLA COMPOSITES; PERFORMANCE; TENSILE;
D O I
10.3390/polym14224988
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fused Filament Fabrication (FFF) is one of the frequently used material extrusion (MEX) additive manufacturing processes due to its ability to manufacture functional components with complex geometry, but their properties depend on the process parameters. This paper focuses on studying the effects of process parameters, namely infill density (25%, 50%, 75%, and 100%), on the mechanical and thermal response of the samples made of poly(lactic acid) (PLA) reinforced with short glass fibers (GF) produced using FFF process. To perform a comprehensive analysis, tensile, flexural, compression, differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA) tests were used. The paper also aims to manufacture by FFF process of composite structures of the fuselage section type, as structural elements of an unmanned aerial vehicle (UAV), and their testing to compression loads. The results showed that the tensile, flexural and compression strength of the additive manufactured (AMed) samples increased with the increase of infill density and therefore, the samples with 100% infill density provides the highest mechanical characteristics. The AMed samples with 50% and 75% infill density exhibited a higher toughness than samples with 100% infill. DSC analyses revealed that the glass transition (Tg), and melting (Tm) temperature increases slightly as the infill density increases. Thermogravimetric analyses (TGA) show that PLA-GF filament loses its thermal stability at a temperature of about 311 degrees C and the increase in fill density leads to a slight increase in thermal stability and the complete degradation temperature of the AMed material. The compression tests of the fuselage sections manufactured by FFF made of PLA-GF composite showed that their stiffening with stringers oriented at an angle of +/- 45 degrees ensures a higher compression strength than the stiffening with longitudinal stringers.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] Characterization of short fiber-reinforced polylactic acid composites produced with Fused Filament Fabrication (FFF)
    Toth, Csenge
    Kovacs, Krisztian Norbert
    12TH HUNGARIAN CONFERENCE ON MATERIALS SCIENCE (HMSC12), 2020, 903
  • [2] Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Process
    Chicos, Lucia-Antoneta
    Pop, Mihai Alin
    Zaharia, Sebastian-Marian
    Lancea, Camil
    Buican, George Razvan
    Pascariu, Ionut Stelian
    Stamate, Valentin-Marian
    MATERIALS, 2022, 15 (10)
  • [3] Fused filament fabrication of continuous optic fiber reinforced polylactic acid composites
    Yan, Rui
    Wang, Yuye
    Luo, Pengjun
    Li, Yangbo
    Lu, Xiaochun
    RAPID PROTOTYPING JOURNAL, 2022, 28 (04) : 766 - 776
  • [4] Influence of process parameters on thermal and mechanical properties of polylactic acid fabricated by fused filament fabrication
    Vanaei, Hamidreza
    Shirinbayan, Mohammadali
    Deligant, Michael
    Raissi, Kaddour
    Fitoussi, Joseph
    Khelladi, Sofiane
    Tcharkhtchi, Abbas
    POLYMER ENGINEERING AND SCIENCE, 2020, 60 (08): : 1822 - 1831
  • [5] Tailoring the vibration characteristics of carbon fiber-reinforced polylactic acid in fused filament fabrication process
    Babu, N. Vinoth
    Venkateshwaran, N.
    Selvan, S. Panneer
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024,
  • [6] Thermal and Mechanical Properties of Short Fiber-Reinforced Epoxy Composites
    Huang, Guang Chun
    Lee, Chung Hee
    Lee, Jong Keun
    POLYMER-KOREA, 2009, 33 (06) : 530 - 536
  • [7] Influence of nanoclay on rheological and mechanical properties of short glass fiber-reinforced polypropylene composites
    Mohan, T. P.
    Kanny, K.
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2011, 30 (02) : 152 - 160
  • [8] Influence of Raster Orientation and Feeding Rate on the Mechanical Properties of Short Carbon Fiber-Reinforced Polyamide Printed by Fused-Filament Fabrication
    Belei, Carlos
    Amancio-Filho, Sergio T.
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023,
  • [9] Effect of Nucleating Agents Addition on Thermal and Mechanical Properties of Natural Fiber-Reinforced Polylactic Acid Composites
    Yang, Jae-Yeon
    Kim, Dong-Kyu
    Han, Woong
    Park, Jong-Yeon
    Kim, Kwan-Woo
    Kim, Byung-Joo
    POLYMERS, 2022, 14 (20)
  • [10] Fabrication and Mechanical Properties of Glass Fiber-Reinforced Wood Plastic Hybrid Composites
    Cui, Yi-Hua
    Tao, Jie
    JOURNAL OF APPLIED POLYMER SCIENCE, 2009, 112 (03) : 1250 - 1257