A Decomposition Theorem for Null-Solutions to Polynomial Slice Dirac Operator

被引:0
|
作者
Yuan, Hongfen [1 ]
Ji, Tieguo [1 ]
Ji, Hongyan [1 ]
机构
[1] Hebei Univ Engn, Coll Sci, Handan 056038, Peoples R China
基金
中国国家自然科学基金;
关键词
Almansi decomposition; Euler operator; Polynomial slice Dirac operator; MONOGENIC FUNCTIONS;
D O I
10.1007/978-3-319-48812-7_34
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a decomposition theorem for null-solutions to the polynomial slice Dirac operator is established by the generalized Euler operator in Rm+1: This is a generalization of the well-known Almansi decomposition theorem. In the sequel our decomposition will be used in the study of boundary value problems for slice monogenic functions.
引用
收藏
页码:269 / 275
页数:7
相关论文
共 50 条
  • [1] Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators
    H. De Bie
    F. Sommen
    M. Wutzig
    Constructive Approximation, 2016, 44 : 339 - 383
  • [2] Reproducing Kernels for Polynomial Null-Solutions of Dirac Operators
    De Bie, H.
    Sommen, F.
    Wutzig, M.
    CONSTRUCTIVE APPROXIMATION, 2016, 44 (03) : 339 - 383
  • [3] Numerical Null-Solutions to Iterated Dirac Operator on Bounded Domains
    Min Ku
    Uwe Kähler
    Complex Analysis and Operator Theory, 2017, 11 : 307 - 328
  • [4] Numerical Null-Solutions to Iterated Dirac Operator on Bounded Domains
    Ku, Min
    Kahler, Uwe
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (02) : 307 - 328
  • [5] The Polynomial Null Solutions of a Higher Spin Dirac Operator in Two Vector Variables
    F. Brackx
    D. Eelbode
    L. Van de Voorde
    Advances in Applied Clifford Algebras, 2011, 21 : 455 - 476
  • [6] The Polynomial Null Solutions of a Higher Spin Dirac Operator in Two Vector Variables
    Brackx, F.
    Eelbode, D.
    Van de Voorde, L.
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2011, 21 (03) : 455 - 476
  • [7] Radiation Conditions and Integral Representations for Clifford Algebra-Valued Null-Solutions of the Helmholtz Operator
    Marmolejo-Olea E.
    Mitrea I.
    Mitrea D.
    Mitrea M.
    Journal of Mathematical Sciences, 2018, 231 (3) : 367 - 472
  • [8] The metaplectic Howe duality and polynomial solutions for the symplectic Dirac operator
    De Bie, Hendrik
    Somberg, Petr
    Soucek, Vladimir
    JOURNAL OF GEOMETRY AND PHYSICS, 2014, 75 : 120 - 128
  • [9] Fischer decomposition and special solutions for the parabolic Dirac operator
    Cerejeiras, P.
    Sommen, F.
    Vieira, N.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (09) : 1057 - 1069
  • [10] Slice Dirac operator over octonions
    Ming Jin
    Guangbin Ren
    Irene Sabadini
    Israel Journal of Mathematics, 2020, 240 : 315 - 344