Parameterization of cloud transmittance for expeditious assessment and forecasting of all-sky DNI

被引:1
|
作者
Yang, Jaemo [1 ]
Xie, Yu [1 ]
Sengupta, Manajit [1 ]
Liu, Yangang [2 ]
Long, Hai [3 ]
机构
[1] Power Syst Engn Ctr, Natl Renewable Energy Lab, Golden, CO 80401 USA
[2] Brookhaven Natl Lab, Environm & Climate Sci Dept, 99 Rochester St, Upton, NY 11973 USA
[3] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA
关键词
RADIATIVE PROPERTIES; ACCURATE PARAMETERIZATION; FAST SCHEME; PREDICTION; MODEL;
D O I
10.1063/5.0127454
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Radiative transfer models require vast computing resources to solve cloud transmittance and reflectance from the radiative transfer equation. As a result, models offering precise simulation in operations often acquire individual cloud transmittance or reflectance from a lookup table precomputed for practicable scenarios. To further expedite the computation of global horizontal irradiance and to reduce the storage requirements, the Fast All-sky Radiation Model for Solar applications (FARMS) parameterized the lookup table using elementary functions with specified coefficients. This study extends FARMS direct normal irradiance (DNI) computation by utilizing hyperbolic tangent functions and various polynomial functions to parameterize the cloud transmittance for scattered solar radiation in the circumsolar region. The parameterization is implemented in FARMS with DNI (FARMS-DNI) and accounts for the circumsolar radiation when assessing or forecasting DNI. The evaluation, with long-term observations at the National Renewable Energy Laboratory's, Solar Radiation Research Laboratory, and the Atmospheric Radiation Measurement, Southern Great Plains, Central Facility, shows that the parameterized DNIs are virtually identical with those computed by coupling FARMS-DNI to a lookup table of cloud transmittance. This parameterization has diverse applications in radiative transfer models and numerical weather prediction models used to assess or forecast direct solar radiation. (c) 2022 Author(s).
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [1] Development of an all-sky imaging system for cloud cover assessment
    Fa, Tao
    Xie, Wanyi
    Wang, Yiren
    Xia, Yingwei
    APPLIED OPTICS, 2019, 58 (20) : 5516 - 5524
  • [2] A Physics-Based DNI Model Assessing All-Sky Circumsolar Radiation
    Xie, Yu
    Sengupta, Manajit
    Liu, Yangang
    Long, Hai
    Min, Qilong
    Liu, Weijia
    Habte, Aron
    ISCIENCE, 2020, 23 (03)
  • [3] Improving the prediction of DNI with physics-based representation of all-sky circumsolar radiation
    Xie, Yu
    Yang, Jaemo
    Sengupta, Manajit
    Liu, Yangang
    Zhou, Xin
    SOLAR ENERGY, 2022, 231 : 758 - 766
  • [4] All-sky photogrammetry techniques to georeference a cloud field
    Crispel, Pierre
    Roberts, Gregory
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) : 593 - 609
  • [5] All-sky polarization imaging of cloud thermodynamic phase
    Eshelman, Laura M.
    Tauc, Martin Jan
    Shaw, Joseph A.
    OPTICS EXPRESS, 2019, 27 (03): : 3528 - 3541
  • [6] Cloud height measurement by a network of all-sky imagers
    Benedikt Blum, Niklas
    Nouri, Bijan
    Wilbert, Stefan
    Schmidt, Thomas
    Luensdorf, Ontje
    Stuehrenberg, Jonas
    Heinemann, Detlev
    Kazantzidis, Andreas
    Pitz-Paal, Robert
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (07) : 5199 - 5224
  • [7] Reflective all-sky thermal infrared cloud imager
    Redman, Brian J.
    Shaw, Joseph A.
    Nugent, Paul W.
    Clark, R. Trevor
    Piazzolla, Sabino
    OPTICS EXPRESS, 2018, 26 (09): : 11276 - 11283
  • [8] Analysis of cloud distribution in Beijing with all-sky images
    Huo, J
    Lu, DR
    Optical Technologies for Atmospheric, Ocean, and Environmental Studies, Pts 1 and 2, 2005, 5832 : 211 - 218
  • [9] Solar Irradiance Ramp Forecasting Based on All-Sky Imagers
    Logothetis, Stavros-Andreas
    Salamalikis, Vasileios
    Nouri, Bijan
    Remund, Jan
    Zarzalejo, Luis F.
    Xie, Yu
    Wilbert, Stefan
    Ntavelis, Evangelos
    Nou, Julien
    Hendrikx, Niels
    Visser, Lennard
    Sengupta, Manajit
    Po, Mario
    Chauvin, Remi
    Grieu, Stephane
    Blum, Niklas
    van Sark, Wilfried
    Kazantzidis, Andreas
    ENERGIES, 2022, 15 (17)
  • [10] Development of an infrared all-sky camera system for cloud monitoring
    Tsutsuki, Risa
    Sako, Shigeyuki
    Takahashi, Hidenori
    Kondo, Sohei
    Takita, Satoshi
    Ohsawa, Ryou
    Beniyama, Jin
    Miyata, Takashi
    Kamizuka, Takafumi
    Takahashi, Ichiro
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY IX, 2022, 12184