共 4 条
Carbon Geochemistry of the Active Serpentinization Site at the Wadi Tayin Massif: Insights From the ICDP Oman Drilling Project: Phase II
被引:10
|作者:
Ternieten, Lotta
[1
]
Frueh-Green, Gretchen L.
[1
]
Bernasconi, Stefano M.
[1
]
机构:
[1] Swiss Fed Inst Technol, Dept Earth Sci, Zurich, Switzerland
基金:
瑞士国家科学基金会;
美国国家科学基金会;
欧洲研究理事会;
关键词:
carbonates;
carbon cycle;
carbon sequestration;
clumped isotopes;
CO2;
Oman Drilling Project;
radiocarbon ages;
serpentinization;
OXYGEN-ISOTOPE FRACTIONATION;
LOW-TEMPERATURE DOLOMITE;
SULTANATE-OF-OMAN;
HIGH-PH WATERS;
SAMAIL OPHIOLITE;
ULTRAMAFIC ROCKS;
SEMAIL-OPHIOLITE;
MANTLE PERIDOTITES;
HOSTED ECOSYSTEM;
STABLE-ISOTOPE;
D O I:
10.1029/2021JB022712
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
A large part of the hydrated oceanic lithosphere consists of serpentinites exposed in ophiolites. Serpentinites constitute reactive chemical and thermal systems and potentially represent an effective sink for CO2. Understanding carbonation mechanisms within ophiolites are almost exclusively based on studies of outcrops, which can limit the interpretation of fossil hydrothermal systems. We present stable and radiogenic carbon isotope data that provide insights into the isotopic trends and fluid evolution of peridotite carbonation in ICDP Oman Drilling Project drill holes BA1B (400-m deep) and BA3A (300-m deep). Geochemical investigations of the carbonates in serpentinites indicate formation in the last 50 kyr, implying a distinctly different phase of alteration than the initial oceanic hydration and serpentinization of the Samail Ophiolite. The oldest carbonates (similar to 31 to >50 kyr) are localized calcite, dolomite, and aragonite veins, formed between 26 degrees C and 43 degrees C and related to focused fluid flow. Subsequent pervasive small amounts of dispersed carbonate precipitated in the last 1,000 years. Macroscopic brecciation and veining of the peridotite indicate that carbonation is influenced by tectonic features allowing infiltration of fluids over extended periods and at different structural levels such as along fracture planes and micro-fractures and grain boundaries, causing large-scale hydration of the ophiolite. The formation of dispersed carbonate is related to percolating fluids with delta O-18 lower than modern ground and meteoric water. Our study shows that radiocarbon investigations are an essential tool to interpret the carbonation history and that stable oxygen and carbon isotopes alone can result in ambiguous interpretations.
引用
收藏
页数:28
相关论文