An optimal-score-based filter pruning for deep convolutional neural networks

被引:8
|
作者
Sawant, Shrutika S. [1 ]
Bauer, J. [1 ]
Erick, F. X. [1 ]
Ingaleshwar, Subodh [2 ]
Holzer, N. [1 ]
Ramming, A. [3 ,4 ]
Lang, E. W. [5 ]
Goetz, Th [1 ,3 ,4 ,5 ]
机构
[1] Fraunhofer Inst Integrated Circuits IIS, Fraunhofer IIS, D-91054 Erlangen, Germany
[2] JSS Acad Tech Educ, Bengaluru, India
[3] Friedrich Alexander Univ FAU Erlangen Nurnberg, Dept Internal Med Rheumatol Immunol 3, Erlangen, Germany
[4] Univ Hosp Erlangen, Erlangen, Germany
[5] Univ Regensburg, Biophys, CIML Grp, D-93040 Regensburg, Germany
关键词
CNN; Deep learning; Filter pruning; Image segmentation; Model compression; Redundancy; SEGMENTATION;
D O I
10.1007/s10489-022-03229-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks (CNN) have achieved excellent performance in the processing of high-resolution images. Most of these networks contain many deep layers in quest of greater segmentation performance. However, over-sized CNN models result in overwhelming memory usage and large inference costs. Earlier studies have revealed that over-sized deep neural models tend to deal with abundant redundant filters that are very similar and provide tiny or no contribution in accelerating the inference of the model. Therefore, we have proposed a novel optimal-score-based filter pruning (OSFP) approach to prune redundant filters according to their relative similarity in feature space. OSFP not only speeds up learning in the network but also eradicates redundant filters leading to improvement in the segmentation performance. We empirically demonstrate on widely used segmentation network models (TernausNet, classical U-Net and VGG16 U-Net) and benchmark datasets (Inria Aerial Image Labeling Dataset and Aerial Imagery for Roof Segmentation (AIRS)) that computation costs (in terms of Float Point Operations (FLOPs) and parameters) are reduced significantly, while maintaining or even improving accuracy.
引用
收藏
页码:17557 / 17579
页数:23
相关论文
共 50 条
  • [1] An optimal-score-based filter pruning for deep convolutional neural networks
    Shrutika S. Sawant
    J. Bauer
    F. X. Erick
    Subodh Ingaleshwar
    N. Holzer
    A. Ramming
    E. W. Lang
    Th. Götz
    [J]. Applied Intelligence, 2022, 52 : 17557 - 17579
  • [2] Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks
    He, Yang
    Dong, Xuanyi
    Kang, Guoliang
    Fu, Yanwei
    Yan, Chenggang
    Yang, Yi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (08) : 3594 - 3604
  • [3] Soft Filter Pruning for Accelerating Deep Convolutional Neural Networks
    He, Yang
    Kang, Guoliang
    Dong, Xuanyi
    Fu, Yanwei
    Yang, Yi
    [J]. PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2234 - 2240
  • [4] Batch-Normalization-based Soft Filter Pruning for Deep Convolutional Neural Networks
    Xu, Xiaozhou
    Chen, Qiming
    Xie, Lei
    Su, Hongye
    [J]. 16TH IEEE INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV 2020), 2020, : 951 - 956
  • [5] FRACTIONAL STEP DISCRIMINANT PRUNING: A FILTER PRUNING FRAMEWORK FOR DEEP CONVOLUTIONAL NEURAL NETWORKS
    Gkalelis, Nikolaos
    Mezaris, Vasileios
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO WORKSHOPS (ICMEW), 2020,
  • [6] Acceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning
    Singh, Pravendra
    Verma, Vinay Kumar
    Rai, Piyush
    Namboodiri, Vinay P.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2020, 14 (04) : 838 - 847
  • [7] Filter Pruning for Efficient Transfer Learning in Deep Convolutional Neural Networks
    Reinhold, Caique
    Roisenberg, Mauro
    [J]. ARTIFICIAL INTELLIGENCEAND SOFT COMPUTING, PT I, 2019, 11508 : 191 - 202
  • [8] Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Ding, Yuhang
    Liu, Ping
    Zhu, Linchao
    Zhang, Hanwang
    Yang, Yi
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2006 - 2015
  • [9] A Filter Rank Based Pruning Method for Convolutional Neural Networks
    Liu, Hao
    Guan, Zhenyu
    Lei, Peng
    [J]. 2021 IEEE 20TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2021), 2021, : 1318 - 1322
  • [10] Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
    He, Yang
    Liu, Ping
    Wang, Ziwei
    Hu, Zhilan
    Yang, Yi
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 4335 - 4344