Even-odd entanglement in boson and spin systems

被引:5
|
作者
Rossignoli, R. [1 ]
Canosa, N. [1 ]
Matera, J. M. [1 ]
机构
[1] Univ Nacl La Plata, Dept Fis IFLP, RA-1900 La Plata, Argentina
来源
PHYSICAL REVIEW A | 2011年 / 83卷 / 04期
关键词
D O I
10.1103/PhysRevA.83.042328
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We examine the entanglement entropy of the even half of a translationally invariant finite chain or lattice in its ground state. This entropy measures the entanglement between the even and odd halves (each forming a "comb" of n/2 sites) and can be expected to be extensive for short-range couplings away from criticality. We first consider bosonic systems with quadratic couplings, where analytic expressions for arbitrary dimensions can be provided. The bosonic treatment is then applied to finite spin chains and arrays by means of the random-phase approximation. Results for first-neighbor anisotropic XY couplings indicate that, while at strong magnetic fields this entropy is strictly extensive, at weak fields important deviations arise, stemming from parity-breaking effects and the presence of a factorizing field (in the vicinity of which it becomes size-independent and identical to the entropy of a contiguous half). Exact numerical results for small spin s chains are shown to be in agreement with the bosonic random-phase approximation prediction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Even-odd entanglement in boson and spin systems (vol 83, 042328, 2011)
    Rossignoli, R.
    Canosa, N.
    Matera, J. M.
    [J]. PHYSICAL REVIEW A, 2011, 83 (05):
  • [2] A new boson approach for the wobbling motion in even-odd nuclei
    Raduta, A. A.
    Raduta, C. M.
    Poenaru, R.
    [J]. JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2021, 48 (01)
  • [3] Deformed boson scheme stressing even-odd boson number difference.: II -: Unified forms of boson-pair coherent states in even- and odd-boson systems
    Kuriyama, A
    Providência, C
    da Providência, J
    Tsue, Y
    Yamamura, M
    [J]. PROGRESS OF THEORETICAL PHYSICS, 2003, 110 (06): : 1071 - 1085
  • [4] Even-odd effects in finite Heisenberg spin chains
    Politi, Paolo
    Pini, Maria Gloria
    [J]. PHYSICAL REVIEW B, 2009, 79 (01):
  • [5] Spin splitting and even-odd effects in carbon nanotubes
    Cobden, DH
    Bockrath, M
    McEuen, PL
    Rinzler, AG
    Smalley, RE
    [J]. PHYSICAL REVIEW LETTERS, 1998, 81 (03) : 681 - 684
  • [6] Negative parity high spin states of even-odd Er isotopes in the interacting boson-fermion model
    Chen, LM
    [J]. CHINESE JOURNAL OF PHYSICS, 1998, 36 (01) : 13 - 19
  • [8] EVEN-ODD XE AND BA ISOTOPES IN THE INTERACTING BOSON-FERMION MODEL
    CHIANG, HC
    HSIEH, ST
    CHUU, DS
    [J]. PHYSICAL REVIEW C, 1989, 39 (06): : 2390 - 2397
  • [9] The Arithmetic of Even-Odd Trees
    Tarau, Paul
    [J]. 2015 17TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2016, : 90 - 97
  • [10] The even-odd hat problem
    Velleman, Daniel J.
    [J]. FUNDAMENTA MATHEMATICAE, 2012, 219 (02) : 105 - 110