Vector spaces and the Petersen graph

被引:0
|
作者
de Carvalho, Marcelo H. [1 ]
Little, C. H. C. [2 ]
机构
[1] Univ Fed Mato Grosso do Sul, Campo Grande, Brazil
[2] Massey Univ, Palmerston North, New Zealand
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2008年 / 15卷 / 01期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that a matching covered graph has an ear decomposition with no more than one double ear if and only if there is no set S of edges such that vertical bar S boolean AND A vertical bar is even for every alternating circuit A but vertical bar S boolean AND C vertical bar is odd for some even circuit C. Two proofs are presented. The first uses vector spaces and the second is constructive. Some applications are also given.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] GRAPH THEOREM IN TOPOLOGICAL VECTOR SPACES
    ADASCH, N
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1971, 119 (02) : 131 - &
  • [2] VECTOR-SPACES ASSOCIATED WITH A GRAPH
    MARGARITA, E
    PUGLIESE, P
    TERRUSI, A
    VACCA, F
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 1977, 304 (2-3): : 121 - 138
  • [3] THE UBIQUITOUS PETERSEN GRAPH
    CHARTRAND, G
    HEVIA, H
    WILSON, RJ
    [J]. DISCRETE MATHEMATICS, 1992, 100 (1-3) : 303 - 311
  • [4] Addressing the Petersen graph
    Elzinga, RJ
    Gregory, DA
    Vander Meulen, KN
    [J]. DISCRETE MATHEMATICS, 2004, 286 (03) : 241 - 244
  • [5] On generalizations of the Petersen graph and the Coxeter graph
    Orel, Marko
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [6] A note on subspace sum graph of vector spaces
    Venkatasalam, Ramanathan
    Chelliah, Selvaraj
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2021, 18 (03) : 186 - 190
  • [7] Generalized median graph computation by means of graph embedding in vector spaces
    Ferrer, M.
    Valveny, E.
    Serratosa, F.
    Riesen, K.
    Bunke, H.
    [J]. PATTERN RECOGNITION, 2010, 43 (04) : 1642 - 1655
  • [8] A root graph that is locally the line graph of the Petersen graph
    Brouwer, AE
    Koolen, JH
    Klin, MH
    [J]. DISCRETE MATHEMATICS, 2003, 264 (1-3) : 13 - 24
  • [9] On a conjecture concerning the Petersen graph
    Nelson, Donald
    Plummer, Michael D.
    Robertson, Neil
    Zha, Xiaoya
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):
  • [10] Supereulerian Graphs and the Petersen Graph
    Xiao Min LI
    Lan LEI
    Hong-Jian LAI
    Meng ZHANG
    [J]. Acta Mathematica Sinica,English Series, 2014, 30 (02) : 291 - 304