Random matchings which induce Hamilton cycles and Hamiltonian decompositions of random regular graphs

被引:44
|
作者
Kim, JH
Wormald, NC
机构
[1] Microsoft Res, Redmond, WA 98052 USA
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1006/jctb.2000.1991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Select four perfect matchings of 2n vertices, independently at random. We find the asymptotic probability that each of the first and second matchings forms a Hamilton cycle with each of the third and fourth. This is generalised to embrace any fixed number of perfect matchings, where a prescribed set of pairs of matchings must each produce Hamilton cycles (with suitable restrictions on the prescribed set of pairs). We also show how the result with four matchings implies that a random d-regular graph for fixed even d greater than or equal to 4 asymptotically almost surely decomposes into d 2 Hamilton cycles. This completes a general result on the edge-decomposition of a random regular graph into regular spanning subgraph of given degrees together with Hamilton cycles and verifies conjectures of Janson and of Robinson and Wormald. (C) 2001 Academic Press.
引用
收藏
页码:20 / 44
页数:25
相关论文
共 50 条
  • [1] ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS
    FRIEZE, AM
    [J]. SURVEYS IN COMBINATORICS, 1989, 1989, 141 : 84 - 114
  • [2] Rainbow Matchings and Hamilton Cycles in Random Graphs
    Bal, Deepak
    Frieze, Alan
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2016, 48 (03) : 503 - 523
  • [3] HAMILTONIAN CYCLES IN RANDOM REGULAR GRAPHS
    FENNER, TI
    FRIEZE, AM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1984, 37 (02) : 103 - 112
  • [4] Hamiltonian decompositions of random bipartite regular graphs
    Greenhill, C
    Kim, JH
    Wormald, NC
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2004, 90 (02) : 195 - 222
  • [5] Rainbow Hamilton cycles in random regular graphs
    Janson, Svante
    Wormald, Nicholas
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2007, 30 (1-2) : 35 - 49
  • [6] Random Matchings in Regular Graphs
    Jeff Kahn
    Jeong Han Kim
    [J]. Combinatorica, 1998, 18 : 201 - 226
  • [7] Random matchings in regular graphs
    Kahn, J
    Kim, JH
    [J]. COMBINATORICA, 1998, 18 (02) : 201 - 226
  • [8] Generating and counting Hamilton cycles in random regular graphs
    Frieze, A
    Jerrum, M
    Molloy, M
    Robinson, R
    Wormald, N
    [J]. JOURNAL OF ALGORITHMS, 1996, 21 (01) : 176 - 198
  • [9] Resilient degree sequences with respect to Hamilton cycles and matchings in random graphs
    Condon, Padraig
    Diaz, Alberto Espuny
    Kuhn, Daniela
    Osthus, Deryk
    Kim, Jaehoon
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2019, 26 (04):
  • [10] Random perfect matchings in regular graphs
    Granet, Bertille
    Joos, Felix
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2024, 64 (01) : 3 - 14