Local Times for Spectrally Negative Levy Processes

被引:4
|
作者
Li, Bo [1 ]
Zhou, Xiaowen [2 ]
机构
[1] Nankai Univ, Sch Math & LPMC, Tianjin, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Spectrally negative Levy process; Local time; Inverse local time; Weighted occupation time; Permanental process; Markovian loop soup measure; OCCUPATION TIMES; SCALE FUNCTIONS;
D O I
10.1007/s11118-018-09756-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For spectrally negative Levy processes, adapting an approach from Li and Palmowski (Stoch. Process. Appl. 128(10), 3273-3299 2018) we identify joint Laplace transforms involving local times evaluated at either the first passage times, or independent exponential times, or inverse local times. The Laplace transforms are expressed in terms of the associated scale functions. Connections are made with the permanental process and the Markovian loop soup measure.
引用
收藏
页码:689 / 711
页数:23
相关论文
共 50 条
  • [1] ON THE LAST EXIT TIMES FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Li, Yingqiu
    Yin, Chuancun
    Zhou, Xiaowen
    [J]. JOURNAL OF APPLIED PROBABILITY, 2017, 54 (02) : 474 - 489
  • [2] Occupation times of spectrally negative Levy processes with applications
    Landriault, David
    Renaud, Jean-Francois
    Zhou, Xiaowen
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (11) : 2629 - 2641
  • [3] On weighted occupation times for refracted spectrally negative Levy processes
    Li, Bo
    Zhou, Xiaowen
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 215 - 237
  • [4] Poissonian occupation times of spectrally negative Levy processes with applications
    Lkabous, Mohamed Amine
    [J]. SCANDINAVIAN ACTUARIAL JOURNAL, 2021, 2021 (10) : 916 - 935
  • [5] ON MOMENTS OF DOWNWARD PASSAGE TIMES FOR SPECTRALLY NEGATIVE LEVY PROCESSES
    Behme, Anita
    Strietzel, Philipp Lukas
    [J]. JOURNAL OF APPLIED PROBABILITY, 2023, 60 (02) : 452 - 464
  • [6] Spectrally negative Levy processes
    [J]. FLUCTUATION THEORY FOR LEVY PROCESSES, 2007, 1897 : 95 - 113
  • [7] Occupation times for spectrally negative Levy processes on the last exit time
    Li, Yingqiu
    Wei, Yushao
    Peng, Zhaohui
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 175
  • [8] Occupation Times of Intervals Until Last Passage Times for Spectrally Negative Levy Processes
    Cai, Chunhao
    Li, Bo
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2018, 31 (04) : 2194 - 2215
  • [9] Occupation times of intervals until first passage times for spectrally negative Levy processes
    Loeffen, Ronnie L.
    Renaud, Jean-Francois
    Zhou, Xiaowen
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2014, 124 (03) : 1408 - 1435
  • [10] Local Times for Spectrally Negative Lévy Processes
    Bo Li
    Xiaowen Zhou
    [J]. Potential Analysis, 2020, 52 : 689 - 711