The Strong Consistency of the Conditional Probability of Error in Discrimination Based on Kernel Stereographic Projection Density Estimator

被引:0
|
作者
Su Yan [1 ]
Yang Zhenhai [2 ]
机构
[1] North China Elect Power Univ, Sch Math & Phys, Baoding 071003, Peoples R China
[2] Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
关键词
Stereographic projection transformation; Kernel density estimator; Nonparametric discrimination; The conditional probability of error in discrimination;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Let (X, Y), (X-1,Y-1), ... , (X-n, Y-n) be R-d x{1, ... , M} -valued i.i.d. random vectors, Z(n) = {(X-1, Y-1), ... (X-n, Y-n)}. (X, Y) is distribution free, to discriminate Y based on Z(n) and X belongs to nonparametric discrimination. Based on kernel stereographic projection density estimator (KSPDE), a new nonparametric discriminate rule is constructed. Under some weak conditions(see theorem 1), the exponential convergence rate and the strong consistency of the conditional probability of error in discrimination are obtained.
引用
收藏
页码:508 / +
页数:2
相关论文
共 50 条