Gene-network inference by message passing

被引:10
|
作者
Braunstein, A. [1 ]
Pagnani, A. [1 ]
Weigt, M. [1 ]
Zecchina, R. [1 ]
机构
[1] Inst Sci Interchange, I-10133 Turin, Italy
关键词
D O I
10.1088/1742-6596/95/1/012016
中图分类号
O59 [应用物理学];
学科分类号
摘要
The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.
引用
收藏
页码:U168 / U178
页数:11
相关论文
共 50 条
  • [1] Theory-guided Message Passing Neural Network for Probabilistic Inference
    Cui, Zijun
    Wang, Hanjing
    Gao, Tian
    Talamadupula, Kartik
    Ji, Qiang
    [J]. INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [2] INFERENCE OF GENE-REGULATORY NETWORKS USING MESSAGE-PASSING ALGORITHMS
    Shamaiah, Manohar
    Lee, Sang Hyun
    Vikalo, Haris
    [J]. 2010 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS), 2010,
  • [3] Approximate message-passing inference algorithm
    Jung, Kyomin
    Shah, Devavrat
    [J]. 2007 IEEE INFORMATION THEORY WORKSHOP, VOLS 1 AND 2, 2007, : 224 - +
  • [4] Deeply Learning the Messages in Message Passing Inference
    Lin, Guosheng
    Shen, Chunhua
    Reid, Ian
    van den Hengel, Anton
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [5] Lifted Message Passing for Hybrid Probabilistic Inference
    Chen, Yuqiao
    Ruozzi, Nicholas
    Natarajan, Sriraam
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5701 - 5707
  • [6] Reactive Message Passing for Scalable Bayesian Inference
    Bagaev, Dmitry
    De Vries, Bert
    [J]. Scientific Programming, 2023, 2023
  • [7] Simulating Active Inference Processes by Message Passing
    van de laar, Thijs W.
    de Vries, Bert
    [J]. FRONTIERS IN ROBOTICS AND AI, 2019, 6
  • [8] Tensor Network Message Passing
    Wang, Yijia
    Zhang, Yuwen Ebony
    Pan, Feng
    Zhang, Pan
    [J]. Physical Review Letters, 2024, 132 (11)
  • [9] Systematic component selection for gene-network refinement
    Radde, Nicole
    Gebert, Jutta
    Forst, Christian V.
    [J]. BIOINFORMATICS, 2006, 22 (21) : 2674 - 2680
  • [10] Message Passing Neural Network Versus Message Passing Algorithm for Cooperative Positioning
    Tedeschini, Bernardo Camajori
    Brambilla, Mattia
    Nicoli, Monica
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2023, 9 (06) : 1666 - 1676