Value functions and performance evaluation in stochastic network models

被引:0
|
作者
Borkar, VS [1 ]
Meyn, SP [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Technol & Comp Sci, Bombay 400005, Maharashtra, India
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper concerns control and performance evaluation for stochastic network models. Structural properties of value functions are developed for controlled random-walk (CRW) models; and associated controlled Brownian motion (CBM) and deterministic (fluid) workload-models. Based on these results we obtain the following conclusions: Outside of a null-set of network parameters, (i) The fluid value function is continuously differentiable. Under further minor conditions, the fluid value function satisfies the Neumann boundary conditions that are required to ensure it solves a martingale problem for the CBM model. (ii) The fluid value function provides a shadow function for use in simulation variance reduction for CRW models. The resulting simulator satisfies an exact large deviation principle, while a standard simulation algorithm does not satisfy any such bound. (iii) The fluid value function provides upper and lower bounds on performance for the CRW and CBM models. This follows from an extension of recent linear programming approaches to performance evaluation.
引用
收藏
页码:2612 / 2617
页数:6
相关论文
共 50 条
  • [1] Workload models for stochastic networks: Value functions and performance evaluation
    Meyn, SP
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (08) : 1106 - 1122
  • [2] Stochastic Evaluation of Indoor Wireless Network Performance with Data-Driven Propagation Models
    Bakirtzis, Stefanos
    Wassell, Ian
    Fiore, Marco
    Zhang, Jie
    [J]. 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3587 - 3592
  • [3] Performance Evaluation of Logistics with Componentized Stochastic Models
    Alves, Gabriel, Jr.
    Maciel, Paulo
    Lima, Ricardo
    Zimmermann, Armin
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 2086 - +
  • [4] Periodic stochastic models for reservoir performance evaluation
    Srinivasan, K.
    Achyutha, H.
    Seetharamu, K.N.
    Venkatarangan, S.N.
    Sriram, L.
    [J]. Journal of the Institution of Engineers (India): Civil Engineering Division, 1995, 76 : 115 - 122
  • [5] Performance Evaluation of Stochastic Bipartite Matching Models
    Comte, Celine
    Dorsman, Jan-Pieter
    [J]. PERFORMANCE ENGINEERING AND STOCHASTIC MODELING, 2021, 13104 : 425 - 440
  • [6] Mobile Cloud Performance Evaluation Using Stochastic Models
    Silva, Francisco Airton
    Kosta, Sokol
    Rodrigues, Matheus
    Oliveira, Danilo
    Maciel, Teresa
    Mei, Alessandro
    Maciel, Paulo
    [J]. IEEE TRANSACTIONS ON MOBILE COMPUTING, 2018, 17 (05) : 1134 - 1147
  • [7] Enhance Performance of Action Evaluation Functions with Stochastic Optimization Algorithms
    Nguyen Quoc Huy
    Dao Duy Nam
    Dang Cong Quoc
    [J]. CONTEXT-AWARE SYSTEMS AND APPLICATIONS (ICCASA 2016), 2017, 193 : 183 - 192
  • [8] STOCHASTIC NETWORK MODELS
    Noel, P. A.
    Allard, A.
    Hebert-Dufresne, L.
    Marceau, V.
    Dube, L. J.
    [J]. SEXUALLY TRANSMITTED INFECTIONS, 2011, 87 : A168 - A169
  • [9] Interval generalized stochastic Petri net models in performance evaluation
    Gaidino, Sergio
    Maciel, Paulo
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2723 - +
  • [10] Performance evaluation of IaaS cloud using Stochastic Neural Network
    Kotteswari, K.
    Bharathi, A.
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (04) : 4613 - 4628