Self-Paced Enhanced Low-Rank Tensor Kernelized Multi-View Subspace Clustering

被引:23
|
作者
Chen, Yongyong [1 ,2 ,3 ]
Wang, Shuqin [4 ]
Xiao, Xiaolin [5 ]
Liu, Youfa [6 ]
Hua, Zhongyun [1 ,2 ,3 ]
Zhou, Yicong [7 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Shenzhen 518055, Peoples R China
[2] Harbin Inst Technol, Biocomp Res Ctr, Shenzhen 518055, Peoples R China
[3] Shenzhen Key Lab Visual Object Detect & Recognit, Shenzhen 518055, Peoples R China
[4] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[5] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[6] Huazhong Agr Univ, Coll Informat, Wuhan 430070, Peoples R China
[7] Univ Macau, Dept Comp & Informat Sci, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Tensors; Kernel; Streaming media; Feature extraction; Videos; Reliability; Clustering methods; Multi-view clustering; low-rank tensor representation; kernel; enhanced low-rank representation; self-paced learning; FUSION; GRAPH;
D O I
10.1109/TMM.2021.3112230
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper addresses the multi-view subspace clustering problem and proposes the self-paced enhanced low-rank tensor kernelized multi-view subspace clustering (SETKMC) method, which is based on two motivations: (1) singular values of the representations and multiple instances should be treated differently. The reasons are that larger singular values of the representations usually quantify the major information and should be less penalized; samples with different degrees of noise may have various reliability for clustering. (2) many existing methods may cause the degraded performance when multi-view features reside in different nonlinear subspaces. This is because they usually assumed that multiple features lie within the union of several linear subspaces. SETKMC integrates the nonconvex tensor norm, self-paced learning, and kernel trick into a unified model for multi-view subspace clustering. The nonconvex tensor norm imposes different weights on different singular values. The self-paced learning gradually involves instances from more reliable to less reliable ones while the kernel trick aims to handle the multi-view data in nonlinear subspaces. One iterative algorithm is proposed based on the alternating direction method of multipliers. Extensive results on seven real-world datasets show the effectiveness of the proposed SETKMC compared to fifteen state-of-the-art multi-view clustering methods.
引用
收藏
页码:4054 / 4066
页数:13
相关论文
共 50 条
  • [1] INCOMPLETE MULTI-VIEW SUBSPACE CLUSTERING WITH LOW-RANK TENSOR
    Liu, Jianlun
    Teng, Shaohua
    Zhang, Wei
    Fang, Xiaozhao
    Fei, Lunke
    Zhang, Zhuxiu
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3180 - 3184
  • [2] Constrained Low-Rank Tensor Learning for Multi-View Subspace Clustering
    Zhang, Tao
    Wang, Bo
    Zhang, Huanhuan
    Zhao, Yu
    [J]. 2022 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY, HUMAN-COMPUTER INTERACTION AND ARTIFICIAL INTELLIGENCE, VRHCIAI, 2022, : 49 - 54
  • [3] Weighted Low-Rank Tensor Representation for Multi-View Subspace Clustering
    Wang, Shuqin
    Chen, Yongyong
    Zheng, Fangying
    [J]. FRONTIERS IN PHYSICS, 2021, 8
  • [4] Low-Rank Tensor Graph Learning for Multi-View Subspace Clustering
    Chen, Yongyong
    Xiao, Xiaolin
    Peng, Chong
    Lu, Guangming
    Zhou, Yicong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (01) : 92 - 104
  • [5] Deep low-rank tensor embedding for multi-view subspace clustering
    Liu, Zhaohu
    Song, Peng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [6] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [7] Multi-view Subspace Clustering with View Correlations via low-rank tensor learning
    Zheng, Qinghai
    Zhu, Jihua
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [8] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Shuqin Wang
    Yongyong Chen
    Yigang Cen
    Linna Zhang
    Hengyou Wang
    Viacheslav Voronin
    [J]. Applied Intelligence, 2022, 52 : 14651 - 14664
  • [9] Low-rank tensor multi-view subspace clustering via cooperative regularization
    Liu, Guoqing
    Ge, Hongwei
    Su, Shuzhi
    Wang, Shuangxi
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 82 (24) : 38141 - 38164
  • [10] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Wang, Hengyou
    Voronin, Viacheslav
    [J]. APPLIED INTELLIGENCE, 2022, 52 (13) : 14651 - 14664