Linear fractional group as Galois group

被引:0
|
作者
Kundu, Lokenath [1 ]
机构
[1] SRM Univ, Amaravati, Andhra Pradesh, India
关键词
Riemann surface; finite group; stable upper genus; inverse Galois problem; POLYNOMIALS; SYMMETRIES; GENUS;
D O I
10.1142/S1793525321500722
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We compute all signatures of $PSL_2(\mathbb{F}_7)$, and $PSL_2(\mathbb{F}_{11})$ which classify all orientation preserving actions of the groups $PSL_2(\mathbb{F}_7)$, and $PSL_2(\mathbb{F}_{11})$ on compact, connected, orientable surfaces with orbifold genus $\geq 0$. This classification is well-grounded in the other branches of Mathematics like topology, smooth, and conformal geometry, algebraic categories, and it is also directly related to the inverse Galois problem.
引用
收藏
页码:355 / 384
页数:30
相关论文
共 50 条