Quasi-maximum likelihood estimation of volatility with high frequency data

被引:167
|
作者
Xiu, Dacheng [1 ]
机构
[1] Princeton Univ, Bendheim Ctr Finance, Princeton, NJ 08540 USA
关键词
Integrated volatility; Market microstructure noise; Quasi-maximum likelihood estimator; Realized kernels; Stochastic volatility; MARKET MICROSTRUCTURE NOISE; REGRESSION; MODELS; SEMIMARTINGALES; DIFFUSIONS; VARIANCE; SAMPLE;
D O I
10.1016/j.jeconom.2010.07.002
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey-Hanning(2) kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 250
页数:16
相关论文
共 50 条