On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow

被引:57
|
作者
Parmar, M. [1 ]
Haselbacher, A. [1 ]
Balachandar, S. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
关键词
forces on bodies; added-mass force; flow about cylinder; flow about sphere; unsteady flow; compressible flow;
D O I
10.1098/rsta.2008.0027
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The unsteady inviscid force on cylinders and spheres in subcritical compressible flow is investigated. In the limit of incompressible flow, the unsteady inviscid force on a cylinder or sphere is the so-called added-mass force that is proportional to the product of the mass displaced by the body and the instantaneous acceleration. In compressible flow, the finite acoustic propagation speed means that the unsteady inviscid force arising from an instantaneously applied constant acceleration develops gradually and reaches steady values only for non-dimensional times c(infinity)t/R greater than or similar to 10, where c(infinity) is the freestream speed of sound and R is the radius of the cylinder or sphere. In this limit, an effective added-mass coefficient may be defined. The main conclusion of our study is that the freestream Mach number has a pronounced effect on both the peak value of the unsteady force and the effective added-mass coefficient. At a freestream Mach number of 0.5, the effective added-mass coefficient is about twice as large as the incompressible value for the sphere. Coupled with an impulsive acceleration, the unsteady inviscid force in compressible flow can be more than four times larger than that predicted from incompressible theory. Furthermore, the effect of the ratio of specific heats on the unsteady force becomes more pronounced as the Mach number increases.
引用
收藏
页码:2161 / 2175
页数:15
相关论文
共 50 条