At hippocampal Schaffer collateral-CA1 synapses, activation of beta-adrenergic receptors and adenylyl cyclase increases transmitter release. However, this effect is transient, which is in contrast to that seen at mossy fiber-CA3 synapses, where activation of cyclic-AMP-dependent protein kinase results in long-lasting facilitation of transmitter release, a phenomenon known as a presynaptic form of long-term potentiation. The present study was aimed at investigating whether forskolin, an adenylyl cyclase activator, could produce long-term effects at the Schaffer collateral-CA1 synapses using extracellular recording techniques. As has been reported previously, forskolin persistently increased the amplitude of evoked population spikes without having a long-term effect on the field excitatory postsynaptic potentials. However, under the conditions where adenosine A, receptors are inhibited, cyclic-AMP metabolism is disrupted or the transport of cyclic-AMP is blocked; forskolin induces long-term potentiation. Forskolin-induced potentiation is associated with a decrease in paired-pulse facilitation and is blocked by the cyclic-AMP-dependent protein kinase inhibitor Rp-adenosine-3',5'-cyclic monophosphorothioate. Activation of Nw-methyl-D-aspartate receptors is not required for forskolin-induced long-term potentiation, because pretreatment of slices with the N-methyl-D-aspartate receptor antagonist D-2-amino-5-phosphonovalerate did not prevent forskolin-induced potentiation. These results suggest that blockade of adenosine A(1) receptors unmasks forskolin-induced long-term potentiation, and activation of cyclic-AMP-dependent protein kinase induces a form of long-term potentiation which is different from that induced by tetanic stimulation. (C) 1998 IBRO. Published by Elsevier Science Ltd.