A module structure and a vanishing theorem for cycles with modulus

被引:15
|
作者
Krishna, Amalendu [1 ]
Park, Jinhyun [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, 1 Homi Bhabha Rd, Bombay, Maharashtra, India
[2] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
algebraic cycle; K-theory; HIGHER CHOW GROUPS; K-THEORY; ALGEBRAIC CYCLES; MIXED MOTIVES; ZERO-CYCLES; FIELD;
D O I
10.4310/MRL.2017.v24.n4.a10
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the higher Chow groups with modulus of Binda-Kerz-Saito for a smooth quasi-projective scheme X is a module over the Chow ring of X. From this, we deduce certain pull-backs, the projective bundle formula, and the blow-up formula for higher Chow groups with modulus. We prove vanishing of 0-cycles of higher Chow groups with modulus on various affine varieties of dimension at least two. This shows in particular that the multivariate analogue of Bloch-EsnaultRulling computations of additive higher Chow groups of 0-cycles vanishes.
引用
收藏
页码:1147 / 1176
页数:30
相关论文
共 50 条
  • [1] The structure theorem for weak module coalgebras
    Yu. Wang
    L. Yu. Zhang
    [J]. Mathematical Notes, 2010, 88 : 3 - 15
  • [2] The Structure Theorem for Weak Module Coalgebras
    Wang, Yu.
    Zhang, L. Yu.
    [J]. MATHEMATICAL NOTES, 2010, 88 (1-2) : 3 - 15
  • [3] A vanishing theorem
    Laytimi, F
    Nahm, W
    [J]. NAGOYA MATHEMATICAL JOURNAL, 2005, 180 : 35 - 43
  • [4] A result on vanishing cycles
    Berkovich, VG
    [J]. GOEMETRY AND COHOMOLOGY OF SOME SIMPLE SHIMURA VARIETIES, 2001, (151): : 257 - 260
  • [5] VANISHING CYCLES ARE UNKNOTTED
    PERRON, B
    [J]. ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1989, 22 (02): : 227 - 253
  • [6] Iterated vanishing cycles
    Massey, David B.
    [J]. MANUSCRIPTA MATHEMATICA, 2013, 141 (3-4) : 699 - 716
  • [7] A FORMULA FOR VANISHING CYCLES
    DUBSON, AS
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (06): : 181 - 184
  • [8] VANISHING CYCLES ARE UNKNOTTED
    PERRON, B
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (19): : 823 - 825
  • [9] VANISHING CYCLES ON GRASSMANNIANS
    BRESSLER, P
    FINKELBERG, M
    LUNTS, V
    [J]. DUKE MATHEMATICAL JOURNAL, 1990, 61 (03) : 763 - 777
  • [10] Vanishing cycles and mutation
    Seidel, P
    [J]. EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 65 - 85