Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid

被引:13
|
作者
Houot, Jean Gabriel [1 ]
San Martin, Jorge [2 ,3 ]
Tucsnak, Marius [1 ]
机构
[1] Nancy Univ, Inst Elie Carton, CNRS INRIA, F-54506 Vandoeuvre Les Nancy, France
[2] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat, Santiago, Chile
关键词
Euler equations; Rigid body-fluid interaction; INCOMPRESSIBLE PERFECT FLUID; FLOW; BALL;
D O I
10.1016/j.jfa.2010.07.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the motion of rigid bodies in a perfect incompressible fluid. The rigid-fluid system fills a bounded domain in R-3. Adapting the strategy from Bourguignon and Brezis (1974) [1], we use the stream lines of the fluid and we eliminate the pressure by solving a Neumann problem. In this way, the system is reduced to an ordinary differential equation on a closed infinite-dimensional manifold. Using this formulation, we prove the local in time existence and uniqueness of strong solutions. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:2856 / 2885
页数:30
相关论文
共 50 条