Non-Abelian BF theory for 2+1 dimensional topological states of matter

被引:27
|
作者
Blasi, A. [1 ,2 ]
Braggio, A. [3 ]
Carrega, M. [4 ,5 ]
Ferraro, D. [1 ,2 ,3 ]
Maggiore, N. [1 ,2 ]
Magnoli, N. [1 ,2 ]
机构
[1] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[2] Ist Nazl Fis Nucl, Sez Genova, I-16146 Genoa, Italy
[3] CNR, SPIN, I-16146 Genoa, Italy
[4] CNR, Ist Nanosci, NEST, I-56126 Pisa, Italy
[5] Scuola Normale Super Pisa, I-56126 Pisa, Italy
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
QUANTUM-FIELD-THEORY; BOUNDARY; GAUGE; WELLS;
D O I
10.1088/1367-2630/14/1/013060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a field theoretical analysis of the 2 + 1 dimensional BF model with boundary in the Abelian and the non-Abelian case based on Symanzik's separability condition. Our aim is to characterize the low-energy properties of time reversal invariant topological insulators. In both cases, on the edges, we obtain Kac-Moody algebras with opposite chiralities reflecting the time reversal invariance of the theory. While the Abelian case presents an apparent arbitrariness in the value of the central charge, the physics on the boundary of the non-Abelian theory is completely determined by time reversal and gauge symmetry. The discussion of the non-Abelian BF model shows that time reversal symmetry on the boundary implies the existence of counter-propagating chiral currents.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Effective theories for 2+1 dimensional non-Abelian topological spin liquids
    Carlos A. Hernaski
    Pedro R.S. Gomes
    [J]. Journal of High Energy Physics, 2017
  • [2] Effective theories for 2+1 dimensional non-Abelian topological spin liquids
    Hernaski, Carlos A.
    Gomes, Pedro R. S.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2017, (10):
  • [3] Covariant momentum map for non-Abelian topological BF field theory
    Molgado, Alberto
    Rodriguez-Lopez, Angel
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2019, 36 (24)
  • [4] Variational Ansatz for an Abelian to Non-Abelian Topological Phase Transition in ν=1/2+1/2 Bilayers
    Crepel, Valentin
    Estienne, Benoit
    Regnault, Nicolas
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (12)
  • [5] Non-Abelian states of matter
    Ady Stern
    [J]. Nature, 2010, 464 : 187 - 193
  • [6] Non-Abelian states of matter
    Stern, Ady
    [J]. NATURE, 2010, 464 (7286) : 187 - 193
  • [7] BRST QUANTIZATION OF NON-ABELIAN BF TOPOLOGICAL THEORIES
    CAICEDO, MI
    GIANVITTORIO, R
    RESTUCCIA, A
    STEPHANY, J
    [J]. PHYSICS LETTERS B, 1995, 354 (3-4) : 292 - 299
  • [8] Topology change in (2+1)-dimensional gravity with non-Abelian Higgs field
    Nesterov, AI
    [J]. GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (09) : 1115 - 1122
  • [9] Topology Change in (2+1)-Dimensional Gravity with Non-Abelian Higgs Field
    Alexander I. Nesterov
    [J]. General Relativity and Gravitation, 1997, 29 : 1115 - 1122
  • [10] ON THE AXIAL ANOMALY IN NON-ABELIAN BF MODEL WITH TOPOLOGICAL COUPLING
    Mendes, K. C.
    Landim, R. R.
    Alencar, G.
    [J]. MODERN PHYSICS LETTERS A, 2010, 25 (34) : 2899 - 2904