Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes

被引:30
|
作者
Preston, Frank G. [1 ]
Meng, Yanda [1 ]
Burgess, Jamie [2 ,3 ,4 ]
Ferdousi, Maryam [5 ,6 ]
Azmi, Shazli [5 ,6 ]
Petropoulos, Ioannis N. [7 ]
Kaye, Stephen [1 ]
Malik, Rayaz A. [7 ]
Zheng, Yalin [1 ,8 ]
Alam, Uazman [2 ,3 ,4 ,9 ]
机构
[1] Univ Liverpool, Inst Life Course & Med Sci, Dept Eye & Vis Sci, Liverpool, Merseyside, England
[2] Univ Liverpool, Inst Life Course & Med Sci, Liverpool, Merseyside, England
[3] Univ Liverpool, Pain Res Inst, Liverpool, Merseyside, England
[4] Liverpool Univ Hosp NHS Fdn Trust, Liverpool, Merseyside, England
[5] Univ Manchester, Inst Cardiovasc Sci, Manchester, Lancs, England
[6] Manchester Fdn Trust, Manchester Diabet Ctr, Manchester, Lancs, England
[7] Weill Cornell Med Qatar, Doha, Qatar
[8] Royal Liverpool Univ Hosp, St Pauls Eye Unit, Liverpool, Merseyside, England
[9] Univ Manchester, Div Endocrinol Diabet & Gastroenterol, Manchester, Lancs, England
基金
美国国家卫生研究院;
关键词
Artificial intelligence; Convolutional neural network; Corneal confocal microscopy; Deep learning algorithm; Diabetic neuropathy; Image segmentation; Ophthalmic imaging; Small nerve fibres; NERVE-FIBERS; SEVERITY;
D O I
10.1007/s00125-021-05617-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims/hypothesis We aimed to develop an artificial intelligence (Al)-based deep learning algorithm (DLA) applying attribution methods without image segmentation to corneal confocal microscopy images and to accurately classify peripheral neuropathy (or lack of). Methods The AI-based DLA utilised convolutional neural networks with data augmentation to increase the algorithm's generalisability. The algorithm was trained using a high-end graphics processor for 300 epochs on 329 corneal nerve images and tested on 40 images (1 image/participant). Participants consisted of healthy volunteer (HV) participants (n = 90) and participants with type 1 diabetes (n = 88), type 2 diabetes (n = 141) and prediabetes (n = 50) (defined as impaired fasting glucose, impaired glucose tolerance or a combination of both), and were classified into HV, those without neumpathy (PN-) (n = 149) and those with neuropathy (PN+) (n = 130). For the AI-based DLA, a modified residual neural network called ResNet-50 was developed and used to extract features from images and perform classification. The algorithm was tested on 40 participants (15 HV, 13 PN-, 12 PN+). Attribution methods gradient-weighted class activation mapping (Grad-CAM), Guided Grad-CAM and occlusion sensitivity displayed the areas within the image that had the greatest impact on the decision of the algorithm. Results The results were as follows: HV: recall of 1.0 (95% CI 1.0, 1.0), precision of 0.83 (95% CI 0.65, 1.0), F-1-score of 0.91 (95% CI 0.79, 1.0); PN-: recall of 0.85 (95% CI 0.62, 1.0), precision of 0.92 (95% CI 0.73, 1.0), F-1-score of 0.88 (95% CI 0.71, 1.0); PN+: recall of 0.83 (95% CI 0.58, 1.0), precision of 1.0 (95% CI 1.0, 1.0), F-1-score of 0.91 (95% CI 0.74, 1.0). The features displayed by the attribution methods demonstrated more corneal nerves in HV, a reduction in corneal nerves for PN- and an absence of corneal nerves for PN+ images. Conclusions/interpretation We demonstrate promising results in the rapid classification of peripheral neuropathy using a single conical image. A large-scale multicentre validation study is required to assess the utility of AI-based DLA in screening and diagnostic programmes for diabetic neuropathy.
引用
收藏
页码:457 / 466
页数:10
相关论文
共 50 条
  • [1] Artificial intelligence utilising corneal confocal microscopy for the diagnosis of peripheral neuropathy in diabetes mellitus and prediabetes
    Frank G. Preston
    Yanda Meng
    Jamie Burgess
    Maryam Ferdousi
    Shazli Azmi
    Ioannis N. Petropoulos
    Stephen Kaye
    Rayaz A. Malik
    Yalin Zheng
    Uazman Alam
    [J]. Diabetologia, 2022, 65 : 457 - 466
  • [2] Diagnosis of Diabetic Neuropathy by Artificial Intelligence using Corneal Confocal Microscopy
    Meng, Y.
    Ferdousi, M.
    Petropoulos, I. N.
    Malik, R. A.
    Zhao, Y.
    Alam, U.
    Zheng, Y.
    [J]. EUROPEAN JOURNAL OF OPHTHALMOLOGY, 2022, 32 (1_SUPPL) : 11 - 12
  • [3] IN VIVO CORNEAL CONFOCAL MICROSCOPY: AN OPHTHALMIC MARKER FOR PERIPHERAL NEUROPATHY IN DIABETES MELLITUS
    Misra, Stuti
    Craig, Jennifer
    Braatvedt, Geoffrey
    Kilfoyle, Dean
    Patel, Dipika
    McGhee, Charles
    [J]. CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2012, 40 : 30 - 30
  • [4] Artificial Intelligence-Based Classification of Diabetic Peripheral Neuropathy From Corneal Confocal Microscopy Images
    Salahouddin, Tooba
    Petropoulos, Ioannis N.
    Ferdousi, Maryam
    Ponirakis, Georgios
    Asghar, Omar
    Alam, Uazman
    Kamran, Saadat
    Mahfoud, Ziyad R.
    Efron, Nathan
    Malik, Rayaz A.
    Qidwai, Uvais A.
    [J]. DIABETES CARE, 2021, 44 (07) : E151 - E153
  • [5] Assessment of diabetic peripheral neuropathy in patients with prediabetes, type 1 and type 2 diabetes using corneal confocal microscopy
    Ferdousi, M.
    Azmi, S.
    Kalteniece, A.
    Petropoulos, I. N.
    Ponirakis, G.
    Alam, U.
    Asghar, O.
    Marshall, A.
    Jones, W.
    Jeziorska, M.
    Soran, H.
    Efron, N.
    Boulton, A. J.
    Malik, R. A.
    [J]. DIABETOLOGIA, 2018, 61 : S465 - S465
  • [6] Artificial Intelligence Based Analysis of Corneal Confocal Microscopy Images for Diagnosing Peripheral Neuropathy: A Binary Classification Model
    Meng, Yanda
    Preston, Frank George
    Ferdousi, Maryam
    Azmi, Shazli
    Petropoulos, Ioannis Nikolaos
    Kaye, Stephen
    Malik, Rayaz Ahmed
    Alam, Uazman
    Zheng, Yalin
    [J]. JOURNAL OF CLINICAL MEDICINE, 2023, 12 (04)
  • [7] Investigation of small fiber neuropathy in patients with diabetes mellitus by corneal confocal microscopy
    Kaplan, Hatice
    Yuzbasioglu, Sema
    Vural, Gonul
    Gumusyayla, Sadiye
    [J]. NEUROPHYSIOLOGIE CLINIQUE-CLINICAL NEUROPHYSIOLOGY, 2024, 54 (04):
  • [8] Rapid Automated Diagnosis of Diabetic Peripheral Neuropathy With In Vivo Corneal Confocal Microscopy
    Petropoulos, Ioannis N.
    Alam, Uazman
    Fadavi, Hassan
    Marshall, Andrew
    Asghar, Omar
    Dabbah, Mohammad A.
    Chen, Xin
    Graham, James
    Ponirakis, Georgios
    Boulton, Andrew J. M.
    Tavakoli, Mitra
    Malik, Rayaz A.
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (04) : 2071 - 2078
  • [9] Corneal Confocal Microscopy: A Biomarker for Diabetic Peripheral Neuropathy
    Petropoulos, Ioannis N.
    Ponirakis, Georgios
    Ferdousi, Maryam
    Azmi, Shazli
    Kalteniece, Alise
    Khan, Adnan
    Gad, Hoda
    Bashir, Bilal
    Marshall, Andrew
    Boulton, Andrew J. M.
    Soran, Handrean
    Malik, Rayaz A.
    [J]. CLINICAL THERAPEUTICS, 2021, 43 (09) : 1457 - 1475
  • [10] Application of corneal confocal microscopy in diabetic peripheral neuropathy
    Li, Lili
    Hou, Xinguo
    Chen, Li
    [J]. DIABETES-METABOLISM RESEARCH AND REVIEWS, 2018, 34