An Efficiency K-Means Data Clustering in Cotton Textile Imports

被引:5
|
作者
Simic, Dragan [1 ]
Svircevic, Vasa [2 ]
Sremac, Sinisa [1 ]
Ilin, Vladimir [1 ]
Simic, Svetlana [3 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Trg Dositeja Obradovica 6, Novi Sad 21000, Serbia
[2] Lames Ltd, Jaracki Put Bb, Sremska Mitrovica 22000, Serbia
[3] Univ Novi Sad, Fac Med, Hajduk Veljkova 1-9, Novi Sad 21000, Serbia
关键词
Data clustering; Cluster; k-means algorithm; Random algorithm; NUMBER;
D O I
10.1007/978-3-319-26227-7_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data clustering is a technique of finding similar characteristics among the data sets which are always hidden in nature, and dividing them into groups. The major factor influencing cluster validation is choosing the optimal number of clusters. A novel random algorithm for estimating the optimal number of clusters is introduced here. The efficiency hybrid random algorithm for good k and modified classical k-means data clustering method in cotton textile imports country clustering and ranking is described and implemented on real-world data set. The original real-world U.S. cotton textile and apparel imports data set is taken under view in this research.
引用
收藏
页码:255 / 264
页数:10
相关论文
共 50 条
  • [1] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    [J]. INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [2] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    [J]. IEEE ACCESS, 2019, 7 : 69162 - 69171
  • [3] k-Means Clustering of Asymmetric Data
    Olszewski, Dominik
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, PT I, 2012, 7208 : 243 - 254
  • [4] Soil data clustering by using K-means and fuzzy K-means algorithm
    Hot, Elma
    Popovic-Bugarin, Vesna
    [J]. 2015 23RD TELECOMMUNICATIONS FORUM TELFOR (TELFOR), 2015, : 890 - 893
  • [5] IMPROVEMENT IN K-MEANS CLUSTERING ALGORITHM FOR DATA CLUSTERING
    Rajeswari, K.
    Acharya, Omkar
    Sharma, Mayur
    Kopnar, Mahesh
    Karandikar, Kiran
    [J]. 1ST INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION ICCUBEA 2015, 2015, : 367 - 369
  • [6] Integrated k-means clustering with data envelopment analysis of public hospital efficiency
    Songul Cinaroglu
    [J]. Health Care Management Science, 2020, 23 : 325 - 338
  • [7] Integrated k-means clustering with data envelopment analysis of public hospital efficiency
    Cinaroglu, Songul
    [J]. HEALTH CARE MANAGEMENT SCIENCE, 2020, 23 (03) : 325 - 338
  • [8] Bagged K-means clustering of metabolome data
    Hageman, J. A.
    van den Berg, R. A.
    Westerhuis, J. A.
    Hoefsloot, H. C. J.
    Smilde, A. K.
    [J]. CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2006, 36 (3-4) : 211 - 220
  • [9] K-means Data Clustering with Memristor Networks
    Jeong, YeonJoo
    Lee, Jihang
    Moon, John
    Shin, Jong Hoon
    Lu, Wei D.
    [J]. NANO LETTERS, 2018, 18 (07) : 4447 - 4453
  • [10] k-Means Clustering of Lines for Big Data
    Marom, Yair
    Feldman, Dan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32