Associative image retrieval using knowledge in encyclopedia text

被引:2
|
作者
Keshi, I
Ikeuchi, H
Kuromusha, K
机构
[1] Info. Technol. Research Laboratories, Sharp Corporation, Tenri, 632, 2613-1, Ichinomoto
[2] I.E.I.C.E., IPS of Japan
[3] IPS of Japan, Japanese Society for AI
关键词
image retrieval; associative retrieval; semantic vector; bootstrapping algorithm;
D O I
10.1002/scj.4690271205
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Applying existing keyword retrieval to image retrieval causes some problems. Among them, database developers must describe photograph contents in detail and adequate retrieval is difficult. These problems have been resolved by developing an associative retrieval technology using not keywords but semantic vectors as a retrieval method with an associative function such as a human being possesses. A semantic vector dictionary of more than 100,000 words was made from encyclopedia text. This paper explains the experimental image retrieval system for 36,000 photographs with the semantic vector dictionary made from the encyclopedia text. This system associates the words input by a user with the knowledge in the encyclopedia text and outputs ranked retrieval results. The effectiveness of this associative retrieval method is confirmed by evaluating content retrieval of images by a small benchmark and making an adaptive learning function of semantic vectors in the case in which a retrieval result is not the same as a user's subjective perspective would impose.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Improving text classification by using encyclopedia knowledge
    Wang, Pu
    Hu, Han
    Zeng, Hua-Jun
    Chen, Lijun
    Chen, Zheng
    [J]. ICDM 2007: PROCEEDINGS OF THE SEVENTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 332 - 341
  • [2] A New Method for Image Understanding and Retrieval Using Text-Mined Knowledge
    Tian, Jing
    Huang, Tinglei
    Huang, Yu
    Zhang, Zi
    Guo, Zhi
    Fu, Kun
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2014, 2014, 8933 : 684 - 694
  • [3] Using Text to Teach Image Retrieval
    Dong, Haoyu
    Wang, Ze
    Qiu, Qiang
    Sapiro, Guillermo
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 1643 - 1652
  • [4] Interactive Image Retrieval Using Text and Image Content
    Dinakaran, B.
    Annapurna, J.
    Kumar, Ch. Aswani
    [J]. CYBERNETICS AND INFORMATION TECHNOLOGIES, 2010, 10 (03) : 20 - 30
  • [5] IMAGE RETRIEVAL AND CLASSIFICATION USING ASSOCIATIVE RECIPROCAL-IMAGE ATTRACTORS
    Greer, Douglas S.
    Tuceryan, Mihran
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 713 - 716
  • [6] A probabilistic, text and knowledge-based image retrieval system
    Izquierdo-Bevia, Ruben
    Tomas, David
    Saiz-Noeda, Maximiliano
    Vicedo, Jose Luis
    [J]. ACCESSING MULTILINGUAL INFORMATION REPOSITORIES, 2006, 4022 : 574 - 577
  • [7] External Knowledge Dynamic Modeling for Image-text Retrieval
    Yang, Song
    Li, Qiang
    Li, Wenhui
    Liu, Min
    Li, Xuanya
    Liu, Anan
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 5330 - 5338
  • [8] Causal image-text retrieval embedded with consensus knowledge
    Liang, Yanpeng
    Liu, Xueer
    Ma, Zhonggui
    Li, Zhuo
    [J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2024, 46 (02): : 317 - 328
  • [9] MUTIMEDIA INFORMATION-RETRIEVAL USING KNOWLEDGE IN ENCYCLOPEDIA TEXTS
    KESHI, I
    IKEUCHI, H
    TANAKA, R
    OSAKI, M
    [J]. SHARP TECHNICAL JOURNAL, 1994, (60): : 31 - 36
  • [10] Text-Guided Knowledge Transfer for Remote Sensing Image-Text Retrieval
    Liu, An-An
    Yang, Bo
    Li, Wenhui
    Song, Dan
    Sun, Zhengya
    Ren, Tongwei
    Wei, Zhiqiang
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5