State-of-Charge Estimation of the Lithium-Ion Battery Using an Adaptive Extended Kalman Filter Based on an Improved Thevenin Model

被引:551
|
作者
He, Hongwen [1 ]
Xiong, Rui [1 ]
Zhang, Xiaowei [1 ]
Sun, Fengchun [1 ]
Fan, JinXin [1 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, Natl Engn Lab Elect Vehicles, Beijing 100081, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Adaptive extended Kalman filter (AEKF); battery model; electric vehicles (EVs); parameter identification; state of charge (SOC); MANAGEMENT-SYSTEMS; PACKS;
D O I
10.1109/TVT.2011.2132812
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An adaptive Kalman filter algorithm is adopted to estimate the state of charge (SOC) of a lithium-ion battery for application in electric vehicles (EVs). Generally, the Kalman filter algorithm is selected to dynamically estimate the SOC. However, it easily causes divergence due to the uncertainty of the battery model and system noise. To obtain a better convergent and robust result, an adaptive Kalman filter algorithm that can greatly improve the dependence of the traditional filter algorithm on the battery model is employed. In this paper, the typical characteristics of the lithium-ion battery are analyzed by experiment, such as hysteresis, polarization, Coulomb efficiency, etc. In addition, an improved Thevenin battery model is achieved by adding an extra RC branch to the Thevenin model, and model parameters are identified by using the extended Kalman filter (EKF) algorithm. Further, an adaptive EKF (AEKF) algorithm is adopted to the SOC estimation of the lithium-ion battery. Finally, the proposed method is evaluated by experiments with federal urban driving schedules. The proposed SOC estimation using AEKF is more accurate and reliable than that using EKF. The comparison shows that the maximum SOC estimation error decreases from 14.96% to 2.54% and that the mean SOC estimation error reduces from 3.19% to 1.06%.
引用
收藏
页码:1461 / 1469
页数:9
相关论文
共 50 条
  • [1] Improved State-of-Charge and Voltage estimation of a Lithium-ion battery based on Adaptive Extended Kalman Filter
    Velivela, Naga Prudhvi
    Guha, Arijit
    [J]. 2023 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE & EXPO, ITEC, 2023,
  • [2] State-of-charge estimation for the lithium-ion battery based on adaptive extended Kalman filter using improved parameter identification
    Shi, Na
    Chen, Zewang
    Niu, Mu
    He, Zhijia
    Wang, Youren
    Cui, Jiang
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 45
  • [3] State-of-Charge Estimation of Lithium-ion Battery Based on an Improved Kalman Filter
    Fang, Hao
    Zhang, Yue
    Liu, Min
    Shen, Weiming
    [J]. 2017 IEEE 21ST INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2017, : 515 - 520
  • [4] State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter
    Chen, Cheng
    Xiong, Rui
    Yang, Ruixin
    Shen, Weixiang
    Sun, Fengchun
    [J]. JOURNAL OF CLEANER PRODUCTION, 2019, 234 : 1153 - 1164
  • [5] State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles
    Zhang, Zhiyong
    Jiang, Li
    Zhang, Liuzhu
    Huang, Caixia
    [J]. JOURNAL OF ENERGY STORAGE, 2021, 37
  • [6] State-of-Charge Estimation Method for Lithium-Ion Batteries Using Extended Kalman Filter With Adaptive Battery Parameters
    Yun, Jaejung
    Choi, Yeonho
    Lee, Jaehyung
    Choi, Seonggon
    Shin, Changseop
    [J]. IEEE ACCESS, 2023, 11 : 90901 - 90915
  • [7] State-of-Charge Estimation of the Lithium-Ion Battery Using Neural Network Based on an Improved Thevenin Circuit Model
    Zhang, Haoliang
    Na, Woonki
    Kim, Jonghoon
    [J]. 2018 IEEE TRANSPORTATION AND ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2018, : 342 - 346
  • [8] State-of-charge estimation approach of lithium-ion batteries using an improved extended Kalman filter
    Yu, Xiaowei
    Wei, Jingwen
    Dong, Guangzhong
    Chen, Zonghai
    Zhang, Chenbin
    [J]. INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 5097 - 5102
  • [9] State-of-charge Estimation of Lithium-ion Batteries Using Extended Kalman Filter
    Rezoug, Mohamed Redha
    Taibi, Djamel
    Benaouadj, Mahdi
    [J]. 2021 10TH INTERNATIONAL CONFERENCE ON POWER SCIENCE AND ENGINEERING (ICPSE 2021), 2021, : 98 - 103
  • [10] A Method of State-of-Charge Estimation for EV Power Lithium-Ion Battery Using a Novel Adaptive Extended Kalman Filter
    He, Zhicheng
    Yang, Ziming
    Cui, Xiangyu
    Li, Eric
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (12) : 14618 - 14630