Edge detection in multispectral images using the self-organizing map

被引:35
|
作者
Toivanen, PJ
Ansamäki, J
Parkkinen, JPS
Mielikäinen, J
机构
[1] Lappeenranta Univ Technol, Dept Informat Technol, Lab Informat Proc, FIN-53851 Lappeenranta, Finland
[2] Kymenlaakso Polytech, Kouvola Business Dept, FIN-45100 Kouvola, Finland
[3] Univ Joensuu, Dept Comp Sci, FIN-80101 Joensuu, Finland
关键词
multispectral image edge detection; ordering of multivariate data; self-organizing maps; feature extraction; pattern recognition; machine vision;
D O I
10.1016/S0167-8655(03)00159-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, two new methods for edge detection in multispectral images are presented. They are based on the use of the self-organizing map (SOM) and a grayscale edge detector. With the 2-dimensional SOM the ordering of pixel vectors is obtained by applying the Peano scan, whereas this can be omitted using the 1-dimensional SOM. It is shown that using the R-ordering based methods some parts of the edges may be missed. However, they can be found using the proposed methods. Using them it is also possible to find edges in images which consist of metameric colors. Finally, it is shown that the proposed methods find the edges properly from real multispectral airplane images. The size of the SOM determines the amount of found edges. If the SOM is taught using a large color vector database, the same SOM can be utilized for numerous images. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:2987 / 2994
页数:8
相关论文
共 50 条
  • [1] EDGE DETECTION IN MULTISPECTRAL IMAGES USING THE N-DIMENSIONAL SELF-ORGANIZING MAP
    Jordan, Johannes
    Angelopoulou, Elli
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [2] Multispectral edge detection using the 2-dimensional Self-Organizing Map
    Toivanen, PJ
    Ansamäki, J
    Leppäjärvi, S
    Parkkinen, JPS
    [J]. APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS IN IMAGE PROCESSING IV, 1999, 3647 : 103 - 110
  • [3] Noise reduction in multispectral images using the self-organizing map
    Toivanen, P
    Laukkanen, M
    Kaarna, A
    Mielikainen, J
    [J]. ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VIII, 2002, 4725 : 195 - 201
  • [4] Segmentation of multispectral MR images using a hierarchical self-organizing map
    Bhandarkar, SM
    Nammalwar, P
    [J]. FOURTEENTH IEEE SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, PROCEEDINGS, 2001, : 294 - 299
  • [5] Evaluation of the Self-Organizing Map Classifier for Building Detection from Lidar Data and Multispectral Aerial Images
    Salah, M.
    Trinder, J.
    Shaker, A.
    [J]. JOURNAL OF SPATIAL SCIENCE, 2009, 54 (02) : 15 - 34
  • [6] Fault detection using hierarchical self-organizing map
    Ge, M
    Du, R
    Xu, YS
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS, INTELLIGENT SYSTEMS AND SIGNAL PROCESSING, VOLS 1 AND 2, PROCEEDINGS, 2003, : 565 - 570
  • [7] Vector quantization of residual images using self-organizing map
    YliRantala, E
    Ojala, T
    Vuorimaa, P
    [J]. ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 464 - 467
  • [8] Edge detection combined entropy threshold and self-organizing map (SOM)
    Wang, Kun
    Gao, Liqun
    Pian, Zhaoyu
    Guo, Li
    Wu, Jianhua
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2007, PT 2, PROCEEDINGS, 2007, 4492 : 931 - +
  • [9] Analysis of impact perforation images using self-organizing map
    Horiuchi, T
    Ogawa, T
    Kanada, H
    [J]. SICE 2004 ANNUAL CONFERENCE, VOLS 1-3, 2004, : 605 - 608
  • [10] Designing fuzzy rule based classifier using self-organizing feature map for analysis of multispectral satellite images
    Pal, NR
    Laha, A
    Das, J
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2005, 26 (10) : 2219 - 2240