Impact of the coagulation of dust particles on Mars during the 2018 global dust storm

被引:5
|
作者
Bertrand, T. [1 ,2 ]
Kahre, M. A. [2 ]
Urata, R. [3 ]
Maattanen, A. [4 ]
Montmessin, F. [5 ]
Wilson, R. J. [2 ]
Wolff, M. J. [6 ]
机构
[1] Univ Paris Diderot, Lab Etud Spatiales & Instrumentat Astrophys LESIA, Sorbonne Paris Cite, Observ Paris,Univ PSL,CNRS,Sorbonne Univ, 5 Pl Jules Janssen, F-92195 Meudon, France
[2] Natl Aeronaut & Space Adm NASA, Space Sci Div, Ames Res Ctr, Moffett Field, CA USA
[3] Bay Area Environm Res Inst, Moffett Field, CA USA
[4] Sorbonne Univ, UVSQ Univ Paris Saclay, CNRS, LATMOS IPSL, Paris, France
[5] Sorbonne Univ, UVSQ Univ Paris Saclay, LATMOS IPSL, CNRS, Guyancourt, France
[6] Space Sci Inst, Boulder, CO USA
基金
美国国家航空航天局;
关键词
Atmospheres; Mars; Climate; Dust storms; GCM; MARTIAN DUST; NUMERICAL SIMULATIONS; ATMOSPHERIC CIRCULATION; INTERANNUAL VARIABILITY; PHYSICAL-PROPERTIES; AEROSOL-PARTICLES; SIZE DISTRIBUTION; PHASE-FUNCTION; CLOUDS; SCATTERING;
D O I
10.1016/j.icarus.2022.115239
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Coagulation of particles occurs when two particles collide and stick together. In the Martian atmosphere, coagulation of dust would increase the dust effective particle size, as small particles accrete to larger particles. Murphy et al. (1990) concluded that Brownian coagulation of dust in the Martian atmosphere was not significant, due to the low dust particle mixing ratios, while Montmessin et al. (2002) and Fedorova et al. (2014) showed that it mostly involves dust particle radii smaller than 0.1 mu m. However, the effects of coagulation have never been explored in 3D, during a global dust storm, and in presence of larger numbers of small particles. Here we revisit this issue by using the NASA Ames Mars Global Climate Model (MGCM) to investigate the temporal and spatial changes in dust particle sizes during the 2018 global dust storm due to dust coagulation and the overall impact of these processes on Mars' climate. Our parameterization for dust coagulation includes the effect of Brownian motion, Brownian diffusion enhancement, and gravitational collection. We show that Brownian motion and Brownian diffusion enhancement dominate gravitational collection. Coagulation has a significant impact during the global storm, with coagulation rates increased by a factor of 10 compared to non-storm conditions. The mean effective particle radius can be increased by a factor of up to 2 due to coagulation, leading to a 20 K colder atmosphere above 30 km altitude. Overall, our parameterization improves the representation of the decay phase of the storm relative to MCS dust observations. Coagulation also remains a significant process affecting dust outside the storm period if large numbers of submicron-sized particles are involved. As coagulation removes the small sub-micron particles within a relatively short time, it may therefore be possible, in GCMs, to lift larger amounts of submicron-sized particles from the surface without excess dust buildup in the atmosphere, thus improving the agreement with some of the observations without diverging from the observed column opacities.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Diurnal Variations of Dust During the 2018 Global Dust Storm Observed by the Mars Climate Sounder
    Kleinbohl, Armin
    Spiga, Aymeric
    Kass, David M.
    Shirley, James H.
    Millour, Ehouarn
    Montabone, Luca
    Forget, Francois
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (01)
  • [2] THEMIS Observations of the 2018 Mars Global Dust Storm
    Smith, Michael D.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2019, 124 (11) : 2929 - 2944
  • [3] An Investigation of the Encirclement of Mars by Dust in the 2018 Global Dust Storm Using EMARS
    Gillespie, H. E.
    Greybush, S. J.
    Wilson, R. J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (07)
  • [4] Mars Climate Sounder Observation of Mars' 2018 Global Dust Storm
    Kass, D. M.
    Schofield, J. T.
    Kleinbohl, A.
    McCleese, D. J.
    Heavens, N. G.
    Shirley, J. H.
    Steele, L. J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (23)
  • [5] Mars Climate Sounder Observation of Mars' 2018 Global Dust Storm
    Kass, D.M.
    Schofield, J.T.
    Kleinböhl, A.
    McCleese, D.J.
    Heavens, N.G.
    Shirley, J.H.
    Steele, L.J.
    [J]. Geophysical Research Letters, 2020, 47 (23):
  • [6] Properties of Water Ice and Dust Particles in the Atmosphere of Mars During the 2018 Global Dust Storm as Inferred From the Atmospheric Chemistry Suite
    Luginin, M.
    Fedorova, A.
    Ignatiev, N.
    Trokhimovskiy, A.
    Shakun, A.
    Grigoriev, A.
    Patrakeev, A.
    Montmessin, F.
    Korablev, O.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (11)
  • [7] Surface Warming During the 2018/Mars Year 34 Global Dust Storm
    Streeter, Paul M.
    Lewis, Stephen R.
    Patel, Manish R.
    Holmes, James A.
    Kass, David M.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (09)
  • [8] Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field
    Sun, Mingyang
    Gu, Hao
    Cui, Jun
    Wu, Xiaoshu
    Huang, Xu
    Ni, Yangxin
    Wu, Zhaopeng
    Li, Lei
    [J]. ASTROPHYSICAL JOURNAL, 2023, 953 (01):
  • [9] Riders on the Storm: NASA InSight Lander and the 2018 Mars Global Dust Storm
    Lisano, Michael E.
    Grover, Myron R.
    [J]. 2019 IEEE AEROSPACE CONFERENCE, 2019,
  • [10] Mars Science Laboratory Observations of the 2018/Mars Year 34 Global Dust Storm
    Guzewich, Scott D.
    Lemmon, M.
    Smith, C. L.
    Martinez, G.
    de Vicente-Retortillo, A.
    Newman, C. E.
    Baker, M.
    Campbell, C.
    Cooper, B.
    Gomez-Elvira, J.
    Harri, A. -M.
    Hassler, D.
    Martin-Torres, F. J.
    McConnochie, T.
    Moores, J. E.
    Kahanpaa, H.
    Khayat, A.
    Richardson, M. I.
    Smith, M. D.
    Sullivan, R.
    de la Torre Juarez, M.
    Vasavada, A. R.
    Viudez-Moreiras, D.
    Zeitlin, C.
    Zorzano Mier, Maria-Paz
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (01) : 71 - 79