Moderate deviations for functional U-processes

被引:2
|
作者
Eichelsbacher, P [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
moderate deviations; partial sums; U processes; VC-classes; decoupling inequality; maximal inequality for U-statistics; Bernstein-type inequality;
D O I
10.1016/S0246-0203(00)01063-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The moderate deviations principle is shown for the partial sums processes built of U-empirical measures and of U-statistics. It is proved that in the non-degenerate case the conditions for the fixed time principles suffice for the moderate deviations principle to carry over to the corresponding partial sums processes. Given a uniformly bounded VC subgraph class of functions, we obtain corresponding moderate deviations for time dependent U-processes. We use decoupling techniques and apply an improved version of a Bernstein-type inequality for degenerate U-statistics. Moreover, we prove and use a Levy-type maximal inequality for U-statistics, (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:245 / 273
页数:29
相关论文
共 50 条