Gas production from layered methane hydrate reservoirs

被引:80
|
作者
Bhade, Piyush [1 ]
Phirani, Jyoti [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Chem Engn, New Delhi 110016, India
关键词
Gas hydrates; Reservoir simulation; Heterogeneity; Layering; PRODUCTION BEHAVIOR; NUMERICAL-SIMULATION; QILIAN MOUNTAIN; POROUS SEDIMENT; DEPRESSURIZATION; PERMAFROST; PRESSURE; DEPOSITS; WELL;
D O I
10.1016/j.energy.2015.01.077
中图分类号
O414.1 [热力学];
学科分类号
摘要
Reservoir simulations are used to find the production strategies for methane gas hydrate reservoirs. Most of these simulation models assume homogeneous reservoirs in absence of substantial well data. Many natural gas hydrate reservoirs are heterogeneous. Majority of the heterogeneity comes from the depositional layering at different geological time scales. Examples are Mount Elbert, block 818 in Gulf of Mexico, Walker Ridge 313 Site. The effect of cross-flow or no cross-flow between the layers is still unknown. In the present work, layered gas hydrate reservoir, underlain by a confined aquifer, with cross-flow between the layers is studied. A 3-dimensional, multi-component, multiphase, thermal, compositional simulator developed by Sun and Mohanty (2005) is used. Earlier work showed that for a confined, homogeneous reservoir underlain by an aquifer layer, depressurization method gives the highest recovery. So, in the present work, only depressurization of the reservoir is considered. In layered reservoirs recovery is found to be dependent on the total volume of the hydrate present in the reservoir, depressurization potential of the reservoir and the enthalpy available for dissociation irrespective of the layering. The layering suggests the positions and progress of the dissociation fronts. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:686 / 696
页数:11
相关论文
共 50 条
  • [1] Numerical analysis of gas production from layered methane hydrate reservoirs by depressurization
    Feng, Yongchang
    Chen, Lin
    Suzuki, Anna
    Kogawa, Takuma
    Okajima, Junnosuke
    Komiya, Atsuki
    Maruyama, Shigenao
    ENERGY, 2019, 166 : 1106 - 1119
  • [2] Hydraulic and thermal controls on gas production from methane hydrate reservoirs
    You, Kehua
    Flemings, Peter
    Dicarlo, David
    MARINE AND PETROLEUM GEOLOGY, 2025, 177
  • [3] METHANE PRODUCTION STRATEGIES FOR OCEANIC GAS HYDRATE RESERVOIRS
    Choudhary, Neelam
    Phirani, Jyoti
    PROCEEDINGS OF THE ASME/JSME/KSME JOINT FLUIDS ENGINEERING CONFERENCE, 2019, VOL 5, 2019,
  • [4] Numerical simulation on gas production from inclined layered methane hydrate reservoirs in the Nankai Trough: A case study
    Mao, Peixiao
    Sun, Jiaxin
    Ning, Fulong
    Chen, Lin
    Wan, Yizhao
    Hu, Gaowei
    Wu, Nengyou
    ENERGY REPORTS, 2021, 7 : 8608 - 8623
  • [5] Sustainable gas production from methane hydrate reservoirs by the cyclic depressurization method
    Konno, Yoshihiro
    Masuda, Yoshihiro
    Akamine, Koya
    Naiki, Motoyoshi
    Nagao, Jiro
    ENERGY CONVERSION AND MANAGEMENT, 2016, 108 : 439 - 445
  • [6] Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs
    Aghajari, Hamid
    Moghaddam, Moien Habibi
    Zallaghi, Mehdi
    GREEN ENERGY & ENVIRONMENT, 2019, 4 (04) : 453 - 469
  • [7] Study of effective parameters for enhancement of methane gas production from natural gas hydrate reservoirs
    Hamid Aghajari
    Moien Habibi Moghaddam
    Mehdi Zallaghi
    Green Energy & Environment, 2019, 4 (04) : 453 - 469
  • [8] A review on simulation of methane production from gas hydrate reservoirs: Molecular dynamics prospective
    Kondori, Javad
    Zendehboudi, Sohrab
    Hossain, M. Enamul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 159 : 754 - 772
  • [9] Simulation of depressurization for gas production from gas hydrate reservoirs
    Hong, H
    Pooladi-Darvish, M
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 2005, 44 (11): : 39 - 46
  • [10] Enhancement of gas production from methane hydrate reservoirs by the combination of hydraulic fracturing and depressurization method
    Feng, Yongchang
    Chen, Lin
    Suzuki, Anna
    Kogawa, Takuma
    Okajima, Junnosuke
    Komiya, Atsuki
    Maruyama, Shigenao
    ENERGY CONVERSION AND MANAGEMENT, 2019, 184 : 194 - 204