Mobius gyrogroups: A Clifford algebra approach

被引:28
|
作者
Ferreira, M. [1 ]
Ren, G. [2 ]
机构
[1] ESTG Polytech Inst Leiria, Dept Math, P-2411901 Leiria, Portugal
[2] Univ Sci & Technol China, Dept Math, Hefei 230026, Anhui, Peoples R China
关键词
Mobius gyrogroups; Mobius projectors; Quotient Mobius gyrogroups; Mobius fiber bundles; THOMAS PRECESSION; SUBGROUPS; PHYSICS; SPACE; BALL;
D O I
10.1016/j.jalgebra.2010.05.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using the Clifford algebra formalism we study the Mobius gyrogroup of the ball of radius t of the paravector space R circle plus V, where V is a finite-dimensional real vector space. We characterize all the gyro-subgroups of the Mobius gyrogroup and we construct left and right factorizations with respect to an arbitrary gyro-subgroup for the paravector ball. The geometric and algebraic properties of the equivalence classes are investigated. We show that the equivalence classes locate in a k-dimensional sphere, where k is the dimension of the gyro-subgroup, and the resulting quotient spaces are again Mobius gyrogroups. With the algebraic structure of the factorizations we study the sections of Mobius fiber bundles inherited by the Mobius projectors. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:230 / 253
页数:24
相关论文
共 50 条
  • [1] From Mobius to gyrogroups
    Ungar, Abraham A.
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (02): : 138 - 144
  • [2] Factorizations of Mobius Gyrogroups
    Ferreira, M.
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2009, 19 (02) : 303 - 323
  • [3] Gyrogroups in Projective Hyperbolic Clifford Analysis
    Ferreira, Milton
    [J]. HYPERCOMPLEX ANALYSIS AND APPLICATIONS, 2011, : 61 - 80
  • [4] CLIFFORD ALGEBRA APPROACH TO GRAPHENE FLATLAND
    Dargys, A.
    [J]. LITHUANIAN JOURNAL OF PHYSICS, 2014, 54 (01): : 33 - 36
  • [5] CLIFFORD-ALGEBRA APPROACH TO TWISTORS
    ABLAMOWICZ, R
    OZIEWICZ, Z
    RZEWUSKI, J
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (02) : 231 - 242
  • [6] Complex Boosts: A Hermitian Clifford Algebra Approach
    Milton Ferreira
    Frank Sommen
    [J]. Advances in Applied Clifford Algebras, 2013, 23 : 339 - 362
  • [7] The Clifford Algebra of the Density Matrix: An Elementary Approach
    Amao, Pedro
    Castillo, Hernan
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2024, 34 (03)
  • [8] Complex Boosts: A Hermitian Clifford Algebra Approach
    Ferreira, Milton
    Sommen, Frank
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (02) : 339 - 362
  • [9] Clifford Algebra
    Wang Rui
    Zhi Derui
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY AND TRAINING, 2009, : 235 - +
  • [10] Hole spin precession in semiconductors: Clifford algebra approach
    Dargys, A.
    [J]. PHYSICA SCRIPTA, 2009, 80 (06)