Spatiotemporal Dynamics of a Diffusive Leslie-Gower Predator-Prey Model with Ratio-Dependent Functional Response

被引:30
|
作者
Shi, Hong-Bo [1 ]
Ruan, Shigui [2 ]
Su, Ying [3 ]
Zhang, Jia-Fang [4 ]
机构
[1] Huaiyin Normal Univ, Sch Math Sci, Huaian 223300, Jiangsu, Peoples R China
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
[3] Harbin Inst Technol, Dept Math, Harbin 150001, Heilongjiang, Peoples R China
[4] Henan Univ, Sch Math & Informat Sci, Kaifeng 475001, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2015年 / 25卷 / 05期
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Diffusive predator-prey model; functional response; stability; Turing instability; Hopf bifurcation; Turing-Hopf bifurcation; TURING-HOPF BIFURCATIONS; QUALITATIVE-ANALYSIS; PATTERN-FORMATION; HETEROCLINIC BIFURCATION; BRUSSELATOR MODEL; SYSTEMS; INSTABILITY; STABILITY;
D O I
10.1142/S0218127415300141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of spatiotemporal dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling type III functional response under homogeneous Neumann boundary conditions. It is shown that the model exhibits spatial patterns via Turing (diffusion-driven) instability and temporal patterns via Hopf bifurcation. Moreover, the existence of spatiotemporal patterns is established via Turing-Hopf bifurcation at the degenerate points where the Turing instability curve and the Hopf bifurcation curve intersect. Various numerical simulations are also presented to illustrate the theoretical results.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Dynamics of a diffusive Leslie-Gower predator-prey system with ratio-dependent Holling III functional response
    Chang, Xiaoyuan
    Zhang, Jimin
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] A modified Leslie-Gower predator-prey model with ratio-dependent functional response and alternative food for the predator
    Flores, Jose D.
    Gonzalez-Olivares, Eduardo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (07) : 2313 - 2328
  • [3] Dynamics of a ratio-dependent Leslie-Gower predator-prey model with Allee effect and fear effect
    Li, Yajing
    He, Mengxin
    Li, Zhong
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 201 : 417 - 439
  • [4] Analysis of a diffusive Leslie-Gower predator-prey model with nonmonotonic functional response
    Yin, Hongwei
    Zhou, Jiaxing
    Xiao, Xiaoyong
    Wen, Xiaoqing
    CHAOS SOLITONS & FRACTALS, 2014, 65 : 51 - 61
  • [5] Dynamics of a diffusive Leslie–Gower predator–prey system with ratio-dependent Holling III functional response
    Xiaoyuan Chang
    Jimin Zhang
    Advances in Difference Equations, 2019
  • [6] Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge
    Guan, Xiaona
    Wang, Weiming
    Cai, Yongli
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (04) : 2385 - 2395
  • [7] Positive solutions of a diffusive Leslie-Gower predator-prey model with Bazykin functional response
    Zhou, Jun
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 1 - 18
  • [8] Modeling the Dynamics of a Ratio-Dependent Leslie-Gower Predator-Prey System with Strong Allee Effect
    Xu, Hainan
    He, Daihai
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16):
  • [9] DYNAMICS OF A DIFFUSIVE LESLIE-GOWER PREDATOR-PREY MODEL IN SPATIALLY HETEROGENEOUS ENVIRONMENT
    Zou, Rong
    Guo, Shangjiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (11): : 4189 - 4210
  • [10] Global boundedness and dynamics of a diffusive predator-prey model with modified Leslie-Gower functional response and density-dependent motion
    Mi, Ying-Yuan
    Song, Cui
    Wang, Zhi-Cheng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119