Energy and criticality in random Boolean networks

被引:4
|
作者
Andrecut, M. [1 ]
Kauffman, S. A. [1 ]
机构
[1] Univ Calgary, Inst Biocomplex & Informat, Calgary, AB T2N 1N4, Canada
关键词
D O I
10.1016/j.physleta.2008.05.041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The central issue of the research on the Random Boolean Networks (RBNs) model is the characterization of the critical transition between ordered and chaotic phases. Here, we discuss an approach based on the 'energy' associated with the unsatisfiability of the Boolean functions in the RBNs model, which provides an upper bound estimation for the energy used in computation. We show that in the ordered phase the RBNs are in a 'dissipative' regime, performing mostly 'downhill' moves on the 'energy landscape. Also, we show that in the disordered phase the RBNs have to 'hillclimb' on the 'energy' landscape in order to perform computation. The analytical results, obtained using Derrida's approximation method, are in complete agreement with numerical simulations. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:4757 / 4760
页数:4
相关论文
共 50 条
  • [1] Maximum Power Efficiency and Criticality in Random Boolean Networks
    Carteret, Hilary A.
    Rose, Kelly John
    Kauffman, Stuart A.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (21)
  • [2] Emergent criticality from coevolution in random Boolean networks
    Liu, Min
    Bassler, Kevin E.
    [J]. PHYSICAL REVIEW E, 2006, 74 (04):
  • [3] Temporal, Structural, and Functional Heterogeneities Extend Criticality and Antifragility in Random Boolean Networks
    Jafet Lopez-Diaz, Amahury
    Sanchez-Puig, Fernanda
    Gershenson, Carlos
    [J]. ENTROPY, 2023, 25 (02)
  • [4] Emergent Criticality in Coupled Boolean Networks
    Kang, Chris
    McElroy, Madelynn
    Voulgarakis, Nikolaos K. K.
    [J]. ENTROPY, 2023, 25 (02)
  • [5] RANDOM BOOLEAN NETWORKS
    ATLAN, H
    FOGELMANSOULIE, F
    SALOMON, J
    WEISBUCH, G
    [J]. CYBERNETICS AND SYSTEMS, 1981, 12 (1-2) : 103 - 121
  • [6] Dynamics of random boolean networks
    Lynch, James F.
    [J]. CURRENT DEVELOPMENTS IN MATHEMATICAL BIOLOGY, 2007, 38 : 15 - 38
  • [7] Noise in random Boolean networks
    Peixoto, Tiago P.
    Drossel, Barbara
    [J]. PHYSICAL REVIEW E, 2009, 79 (03):
  • [8] Modular Random Boolean Networks
    Poblanno-Balp, Rodrigo
    Gershenson, Carlos
    [J]. ARTIFICIAL LIFE, 2011, 17 (04) : 331 - 351
  • [9] Contextual random boolean networks
    Gershenson, C
    Broekaert, J
    Aerts, D
    [J]. ADVANCES IN ARTIFICIAL LIFE, PROCEEDINGS, 2003, 2801 : 615 - 624
  • [10] Stabilization of Random Boolean Networks
    Qi, Hongsheng
    Cheng, Daizhan
    Hu, Xiaoming
    [J]. 2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 1968 - 1973