Silicon Nitride MOMS Oscillator for Room Temperature Quantum Optomechanics

被引:12
|
作者
Serra, Enrico [1 ]
Morana, Bruno [2 ]
Borrielli, Antonio [3 ]
Marin, Francesco [4 ,5 ,6 ,7 ]
Pandraud, Gregory [2 ]
Pontin, Antonio [4 ,5 ,6 ,7 ]
Prodi, Giovanni Andrea [8 ]
Sarro, Pasqualina M. [2 ]
Bonaldi, Michele [3 ]
机构
[1] TIFPA, Ist Nazl Fis Nucl, I-38123 Trento, Italy
[2] Delft Univ Technol, ECTM, EKL, NL-2628 Delft, Netherlands
[3] Inst Mat Elect & Magnetism, Nanosci Trento FBK Div, I-38123 Trento, Italy
[4] Univ Firenze, Dipartimento Fis & Astron, I-50121 Florence, Italy
[5] Univ Firenze, LENS, I-50121 Florence, Italy
[6] INFN, Sez Firenze, I-50019 Sesto Fiorentino, FI, Italy
[7] CNR, INO, I-50125 Florence, Italy
[8] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
基金
欧盟地平线“2020”;
关键词
MOMS oscillator; quantum optomechanics; SiN thin membrane; reactive ion etching; THERMAL NOISE; CAVITY;
D O I
10.1109/JMEMS.2018.2876593
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Optomechanical SiN nano-oscillators in high-finesse Fabry-Perot cavities can be used to investigate the interaction between mechanical and optical degree of freedom for ultra-sensitive metrology and fundamental quantum mechanical studies. In this paper, we present a nano-oscillator made of a high-stress round-shaped SiN membrane with an integrated on-chip 3-D acoustic shield properly designed to reduce mechanical losses. This oscillator works in the range of 200 kHz to 5 MHz and features a mechanical quality factor of Q similar or equal to 10(7) and a Q-frequency product in excess of 6.2 x 10(12) Hz at room temperature, fulfilling the minimum requirement for quantum ground-state cooling of the oscillator in an optomechanical cavity. The device is obtained by MEMS deep reactive-ion etching (DRIE) bulk micromachining with a two-side silicon processing on a silicon-on-insulator wafer. The microfabrication process is quite flexible such that additional layers could be deposited over the SiN membrane before the DRIE steps, if required for a sensing application. Therefore, such oscillator is a promising candidate for quantum sensing applications in the context of the emerging field of quantum technologies.
引用
收藏
页码:1193 / 1203
页数:11
相关论文
共 50 条
  • [1] Silicon-nitride nanosensors toward room temperature quantum optomechanics
    Serra, Enrico
    Borrielli, Antonio
    Marin, Francesco
    Marino, Francesco
    Malossi, Nicola
    Morana, Bruno
    Piergentili, Paolo
    Prodi, Giovanni Andrea
    Sarro, Pasqualina Maria
    Vezio, Paolo
    Vitali, David
    Bonaldi, Michele
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (06)
  • [2] Room temperature quantum emitters in aluminum nitride epilayers on silicon
    Cannon, Joseph K.
    Bishop, Sam G.
    Eggleton, Katie M.
    Yagci, Huseyin B.
    Clark, Rachel N.
    Ibrahim, Sherif R.
    Hadden, John P.
    Ghosh, Saptarsi
    Kappers, Menno J.
    Oliver, Rachel A.
    Bennett, Anthony J.
    APPLIED PHYSICS LETTERS, 2024, 124 (24)
  • [3] Mechanical Resonators for Quantum Optomechanics Experiments at Room Temperature
    Norte, R. A.
    Moura, J. P.
    Groblacher, S.
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [4] Room-temperature Coulomb blockade effect in silicon quantum dots in silicon nitride films
    Cho, Chang-Hee
    Kim, Baek-Hyun
    Park, Seong-Ju
    APPLIED PHYSICS LETTERS, 2006, 89 (01)
  • [5] Selfmix and optomechanics with silicon nitride membrane
    Baldacci, L.
    Pitanti, A.
    Masini, L.
    Arcangeli, A.
    Colangelo, F.
    Navarro-Urrios, D.
    Tredicucci, A.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [6] Mode shape engineering of silicon nitride nano-strings for quantum optomechanics
    Schilling, R.
    Ghadimi, A.
    Fedorov, S.
    Schutz, H.
    Sudhir, V.
    Kippenberg, T. J.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [7] Room-temperature quantum optomechanics using an ultralow noise cavity
    Huang, Guanhao
    Beccari, Alberto
    Engelsen, Nils J.
    Kippenberg, Tobias J.
    NATURE, 2024, 626 (7999) : 512 - 516
  • [8] Room-temperature quantum optomechanics using an ultralow noise cavity
    Guanhao Huang
    Alberto Beccari
    Nils J. Engelsen
    Tobias J. Kippenberg
    Nature, 2024, 626 : 512 - 516
  • [9] Exploring regenerative coupling in phononic crystals for room temperature quantum optomechanics
    Weituschat, Lukas M.
    Castro, Irene
    Colomar, Irene
    Everly, Christer
    Postigo, Pablo A.
    Ramos, Daniel
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] Room-Temperature Quantum Emitter in Aluminum Nitride
    Bishop, Sam G.
    Hadden, John P.
    Alzahrani, Faris D.
    Hekmati, Reza
    Huffaker, Diana L.
    Langbein, Wolfgang W.
    Bennett, Anthony J.
    ACS PHOTONICS, 2020, 7 (07) : 1636 - 1641