Classification of Cancer Microscopic Images via Convolutional Neural Networks

被引:6
|
作者
Khan, Mohammad Azam [1 ]
Choo, Jaegul [1 ]
机构
[1] Korea Univ, Seoul 136713, South Korea
关键词
B-lymphoblast cell; Blood smear; B-lymphoid; Blood cancer; Convolutional neural networks;
D O I
10.1007/978-981-15-0798-4_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes our approach for the classification of normal versus malignant cells in B-ALL white blood cancer microscopic images: ISBI 2019- classification of leukemic B-lymphoblast cells from normal B-lymphoid precursors from blood smear microscopic images. We leverage a state of the art convolutional neural network pretrained with the ImageNet dataset and applied several data augmentation and hyperparameters optimization strategies. Our method obtains an F1 score of 0.83 for the final test set in the competition.
引用
收藏
页码:141 / 147
页数:7
相关论文
共 50 条
  • [1] Ensemble Convolutional Neural Networks for Cell Classification in Microscopic Images
    Shi, Tian
    Wu, Longshi
    Zhong, Changhong
    Wang, Ruixuan
    Zheng, Weishi
    [J]. ISBI 2019 C-NMC CHALLENGE: CLASSIFICATION IN CANCER CELL IMAGING, 2019, : 43 - 51
  • [2] Automatic classification of cells in microscopic fecal images using convolutional neural networks
    Du, Xiaohui
    Liu, Lin
    Wang, Xiangzhou
    Ni, Guangming
    Zhang, Jing
    Hao, Ruqian
    Liu, Juanxiu
    Liu, Yong
    [J]. BIOSCIENCE REPORTS, 2019, 39
  • [3] Acute Lymphoblastic Leukemia Classification from Microscopic Images Using Convolutional Neural Networks
    Prellberg, Jonas
    Kramer, Oliver
    [J]. ISBI 2019 C-NMC CHALLENGE: CLASSIFICATION IN CANCER CELL IMAGING, 2019, : 53 - 61
  • [4] Classification of Blood Cancer Images Using a Convolutional Neural Networks Ensemble
    Ma, Kaiqiang
    Sun, Lingling
    Wang, Yaqi
    Wang, Junchao
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [5] Classification of breast cancer histology images using Convolutional Neural Networks
    Araujo, Teresa
    Aresta, Guilherme
    Castro, Eduardo
    Rouco, Jose
    Aguiar, Paulo
    Eloy, Catarina
    Polonia, Antonio
    Campilho, Aurelio
    [J]. PLOS ONE, 2017, 12 (06):
  • [6] CLASSIFICATION OF HYPERSPECTRAL COLON CANCER IMAGES USING CONVOLUTIONAL NEURAL NETWORKS
    Mobilia, Sean
    Sirkeci-Mergen, Birsen
    Deal, Joshua
    Rich, Thomas C.
    Leavesley, Silas J.
    [J]. 2019 IEEE DATA SCIENCE WORKSHOP (DSW), 2019, : 232 - 236
  • [7] Classification of Compressed Remote Sensing Multispectral Images via Convolutional Neural Networks
    Giannopoulos, Michalis
    Aidini, Anastasia
    Pentari, Anastasia
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    [J]. JOURNAL OF IMAGING, 2020, 6 (04)
  • [8] Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks
    Bardou, Dalal
    Zhang, Kun
    Ahmad, Sayed Mohammad
    [J]. IEEE ACCESS, 2018, 6 : 24680 - 24693
  • [9] MULTILABEL CLASSIFICATION OF UAV IMAGES WITH CONVOLUTIONAL NEURAL NETWORKS
    Zeggada, Abdallah
    Melgani, Farid
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5083 - 5086
  • [10] ON CLASSIFICATION OF DISTORTED IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS
    Zhou, Yiren
    Song, Sibo
    Cheung, Ngai-Man
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 1213 - 1217