Combining empirical likelihood and generalized method of moments estimators: Asymptotics and higher order bias

被引:0
|
作者
Israelov, Roni [1 ]
Lugauer, Steven [1 ]
机构
[1] Univ Notre Dame, Dept Econ, Notre Dame, IN 46556 USA
关键词
Generalized method of moments; Empirical likelihood; GMM;
D O I
10.1016/j.spl.2011.04.022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes an estimator combining empirical likelihood (EL) and the generalized method of moments (GMM) by allowing the sample average moment vector to deviate from zero and the sample weights to deviate from n(-1). The new estimator may be adjusted through free parameter delta is an element of (0, 1) with GMM behavior attained as delta -> 0 and EL as delta -> 1. When the sample size is small and the number of moment conditions is large, the parameter space under which the EL estimator is defined may be restricted at or near the population parameter value. The support of the parameter space for the new estimator may be adjusted through delta. The new estimator performs well in Monte Carlo simulations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1339 / 1347
页数:9
相关论文
共 50 条