Commutators of Bilinear θ-Type Calderon-Zygmund Operators on Morrey Spaces Over Non-Homogeneous Spaces

被引:16
|
作者
Lu, G. -H. [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Gansu, Peoples R China
关键词
non-homogeneous metric measure space; commutator; bilinear theta-type Calderon-Zygmund operator; R(BM)over-tildeO(mu); Morrey space; HARDY-SPACES; MULTILINEAR COMMUTATORS; FRACTIONAL INTEGRALS; H-1; BOUNDEDNESS; INEQUALITIES; BMO;
D O I
10.1007/s10476-020-0020-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to establish the boundedness of the commutator [b(1), b(2), T-theta], which generated by the bilinear theta-type Calderon-Zygmund operators T-theta and the functions b(1),b(2)is an element of(RBMO) over tilde(mu), on non-homogeneous metric measure space satisfying the so-called geometrically doubling and the upper doubling conditions. Under the assumption that the dominating function lambda satisfies the epsilon-weak reverse doubling conditions, the author proves that the commutator [b(1), b(2), T-theta] is bounded from the Lebesgue space L-p(mu) into the product of Lebesgue space L-p1(mu)xL(p2)(mu) with 1/p=1/p(1)+1/p(2)((1 < p, p(1), p(2) < infinity). Furthermore, the boundedness of the commutator [b(1), b(2), T-theta] on Morrey space M-p(q) (mu) is also obtained, where 1 < q <= p < infinity.
引用
收藏
页码:97 / 118
页数:22
相关论文
共 50 条