HelPredictor models single-cell transcriptome to predict human embryo lineage allocation

被引:8
|
作者
Liang, Pengfei [1 ]
Zheng, Lei [1 ]
Long, Chunshen [1 ]
Yang, Wuritu [1 ]
Yang, Lei [2 ]
Zuo, Yongchun [1 ]
机构
[1] Inner Mongolia Univ, Coll Life Sci, State Key Lab Reprod Regulat & Breeding Grassland, Hohhot 010070, Peoples R China
[2] Harbin Med Univ, Coll Bioinformat Sci & Technol, Harbin 150081, Peoples R China
关键词
single-cell RNA sequencing; lineage allocation; feature selection; machine learning; cell identity; PRIMITIVE ENDODERM; PLURIPOTENCY; IDENTIFICATION; HETEROGENEITY; EPIBLAST; FGFR1; NANOG; STATE;
D O I
10.1093/bib/bbab196
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The in-depth understanding of cellular fate decision of human preimplantation embryos has prompted investigations on how changes in lineage allocation, which is far from trivial and remains a time-consuming task by experimental methods. It is desirable to develop a novel effective bioinformatics strategy to consider transitions of coordinated embryo lineage allocation and stage-specific patterns. There are rapidly growing applications of machine learning models to interpret complex datasets for identifying candidate development-related factors and lineage-determining molecular events. Here we developed the first machine learning platform, HelPredictor, that integrates three feature selection methods, namely, principal components analysis, F-score algorithm and squared coefficient of variation, and four classical machine learning classifiers that different combinations of methods and classifiers have independent outputs by increment feature selection method. With application to single-cell sequencing data of human embryo, HelPredictor not only achieved 94.9% and 90.9% respectively with cross-validation and independent test, but also fast classified different embryonic lineages and their development trajectories using less HelPredictor-predicted factors. The above-mentioned candidate lineage-specific genes were discussed in detail and were clustered for exploring transitions of embryonic heterogeneity. Our tool can fast and efficiently reveal potential lineage-specific and stage-specific biomarkers and provide insights into how advanced computational tools contribute to development research. The source code is available at https://github.com/liameihao/He lPredictor.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] The Drosophila embryo at single-cell transcriptome resolution
    Karaiskos, Nikos
    Wahle, Philipp
    Alles, Jonathan
    Boltengagen, Anastasiya
    Ayoub, Salah
    Kipar, Claudia
    Kocks, Christine
    Rajewsky, Nikolaus
    Zinzen, Robert P.
    SCIENCE, 2017, 358 (6360) : 194 - 199
  • [2] ScnML models single-cell transcriptome to predict spinal cord neuronal cell status
    Liu, Lijia
    Huang, Yuxuan
    Zheng, Yuan
    Liao, Yihan
    Ma, Siyuan
    Wang, Qian
    FRONTIERS IN GENETICS, 2024, 15
  • [3] Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models
    Jiehan Li
    Christopher Jin
    Stefan Gustafsson
    Abhiram Rao
    Martin Wabitsch
    Chong Y. Park
    Thomas Quertermous
    Joshua W. Knowles
    Ewa Bielczyk-Maczynska
    Scientific Data, 10
  • [4] Single-cell transcriptome dataset of human and mouse in vitro adipogenesis models
    Li, Jiehan
    Jin, Christopher
    Gustafsson, Stefan
    Rao, Abhiram
    Wabitsch, Martin
    Park, Chong Y.
    Quertermous, Thomas
    Knowles, Joshua W.
    Bielczyk-Maczynska, Ewa
    SCIENTIFIC DATA, 2023, 10 (01)
  • [5] A Single-Cell Transcriptome Atlas of the Human Pancreas
    Muraro, Mauro J.
    Dharmadhikari, Gitanjali
    Gruen, Dominic
    Groen, Nathalie
    Dielen, Tim
    Jansen, Erik
    van Gurp, Leon
    Engelse, Marten A.
    Carlotti, Francoise
    de Koning, Eelco J. P.
    van Oudenaarden, Alexander
    CELL SYSTEMS, 2016, 3 (04) : 385 - +
  • [6] Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo
    Wagner, Daniel E.
    Weinreb, Caleb
    Collins, Zach M.
    Briggs, James A.
    Megason, Sean G.
    Klein, Allon M.
    SCIENCE, 2018, 360 (6392) : 981 - +
  • [7] A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development
    Yao, Zizhen
    Mich, John K.
    Ku, Sherman
    Menon, Vilas
    Krostag, Anne-Rachel
    Martinez, Refugio A.
    Furchtgott, Leon
    Mulholland, Heather
    Bort, Susan
    Fuqua, Margaret A.
    Gregor, Ben W.
    Hodge, Rebecca D.
    Jayabalu, Anu
    May, Ryan C.
    Melton, Samuel
    Nelson, Angelique M.
    Ngo, N. Kiet
    Shapovalova, Nadiya V.
    Shehata, Soraya I.
    Smith, Michael W.
    Tait, Leah J.
    Thompson, Carol L.
    Thomsen, Elliot R.
    Ye, Chaoyang
    Glass, Ian A.
    Kaykas, Ajamete
    Yao, Shuyuan
    Phillips, John W.
    Grimley, Joshua S.
    Levi, Boaz P.
    Wang, Yanling
    Ramanathan, Sharad
    CELL STEM CELL, 2017, 20 (01) : 120 - 134
  • [8] The changing mouse embryo transcriptome at whole tissue and single-cell resolution
    He, Peng
    Williams, Brian A.
    Trout, Diane
    Marinov, Georgi K.
    Amrhein, Henry
    Berghella, Libera
    Goh, Say-Tar
    Plajzer-Frick, Ingrid
    Afzal, Veena
    Pennacchio, Len A.
    Dickel, Diane E.
    Visel, Axel
    Ren, Bing
    Hardison, Ross C.
    Zhang, Yu
    Wold, Barbara J.
    NATURE, 2020, 583 (7818) : 760 - +
  • [9] The changing mouse embryo transcriptome at whole tissue and single-cell resolution
    Peng He
    Brian A. Williams
    Diane Trout
    Georgi K. Marinov
    Henry Amrhein
    Libera Berghella
    Say-Tar Goh
    Ingrid Plajzer-Frick
    Veena Afzal
    Len A. Pennacchio
    Diane E. Dickel
    Axel Visel
    Bing Ren
    Ross C. Hardison
    Yu Zhang
    Barbara J. Wold
    Nature, 2020, 583 : 760 - 767
  • [10] Insights into the single-cell transcriptome characteristics of porcine endometrium with embryo loss
    Chu, Tingting
    Jin, Yadan
    Wu, Guofang
    Liu, Jinyi
    Sun, Shiduo
    Song, Yuxuan
    Zhang, Guoliang
    FASEB JOURNAL, 2025, 39 (06):