Fast Numerical Solution for Elliptic Problem

被引:0
|
作者
Hasan, Mohammad Khatim [1 ]
Hoe, Ng Yit [1 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Informat Sci & Technol, Sch Informat Technol, Ukm Bangi 43600, Selangor, Malaysia
关键词
Elliptic problem; successive over relaxation; accelerated over relaxation; rotated finite difference scheme; quarter sweep scheme; DIFFUSION EQUATION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Elliptic equations have been used for decades to simulate several scientific phenomena such as electrostatic problem, wave guide transmission and several others steady problem. In this paper, we will solve elliptic problem by using a general over relaxation methods. The method shows to solve the problem not only faster but also more accurate than the existing numerical scheme.
引用
收藏
页码:394 / 399
页数:6
相关论文
共 50 条
  • [1] Numerical solution of inverse problem for elliptic pdes
    Sayfy, A
    Makky, SM
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2003, 80 (05) : 665 - 670
  • [2] ON THE NUMERICAL SOLUTION OF AN ELLIPTIC PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS
    Jeknic, Zorica Milovanovic
    Sredojevic, Bratislav
    Bojovic, Dejan
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2023, 59 : 179 - 201
  • [3] ON THE NUMERICAL SOLUTION OF AN ELLIPTIC PROBLEM WITH NONLOCAL BOUNDARY CONDITIONS
    Faculty of Construction Management, University Union-Nikola Tesla, Cara Dusana 62-64, Belgrade
    11000, Serbia
    不详
    36000, Serbia
    不详
    34000, Serbia
    Electron. Trans. Numer. Anal., 1600, (179-201):
  • [5] Existence of a positive solution and numerical solution for some elliptic superlinear problem
    Cecilio, D. L.
    Cuevas, C.
    Mesquita, J. G.
    Ubilla, P.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (2-3) : 1338 - 1356
  • [6] Fast numerical solution of the linearized Molodensky problem
    Klees, R
    van Gelderen, M
    Lage, C
    Schwab, C
    JOURNAL OF GEODESY, 2001, 75 (7-8) : 349 - 362
  • [7] Fast numerical solution of the linearized Molodensky problem
    R. Klees
    M. van Gelderen
    C. Lage
    C. Schwab
    Journal of Geodesy, 2001, 75 : 349 - 362
  • [8] Fast numerical solution of the vector Molodensky problem
    Klees, R
    Lage, C
    Schwab, C
    IV HOTINE-MARUSSI SYMPOSIUM ON MATHEMATICAL GEODESY, 2001, (122): : 137 - 144
  • [9] A numerical solution of a Cauchy problem for an elliptic equation by Krylov subspaces
    Elden, Lars
    Simoncini, Valeria
    INVERSE PROBLEMS, 2009, 25 (06)
  • [10] Numerical solution of a generalized elliptic partial differential eigenvalue problem
    Otto, SR
    Denier, JP
    JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 156 (02) : 352 - 359