Improved half-metallic ferromagnetism of transition-metal pnictides and chalcogenides calculated with a modified Becke-Johnson exchange potential

被引:116
|
作者
Guo, San-Dong [1 ]
Liu, Bang-Gui
机构
[1] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
关键词
BAND-STRUCTURE; APPROXIMATION; INSULATORS;
D O I
10.1209/0295-5075/93/47006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use a density-functional-theory (DFT) approach with a modified Becke-Johnson exchange plus local density approximation (LDA) correlation potential (mBJLDA) (semi-local, orbital-independent, producing accurate semiconductor gaps, see Tran F. and BLAHA P., Phys. Rev. Lett., 102 (2009) 226401) to investigate the electronic structures of zincblende transition-metal (TM) pnictides and chalcogenides akin to semiconductors. Our results show that this potential does not yield visible changes in wide TM d-t(2g) bands near the Fermi level, but makes the occupied minority-spin p-bands lower by 0.25-0.35 eV and the empty (or nearly empty) minority-spin e(g) bands across the Fermi level higher by 0.33-0.73 eV. Consequently, mBJLDA, having no atom-dependent parameters, makes zincblende MnAs become a truly half-metallic (HM) ferromagnet with a HM gap (the key parameter) 0.318 eV, being consistent with experiment. For zincblende MnSb, CrAs, CrSb, CrSe, or CrTe, the HM gap is enhanced by 19-56% compared to LDA and generalized gradient approximation results. The improved HM ferromagnetism can be understood in terms of the mBJLDA-enhanced spin exchange splitting. Copyright (C) EPLA, 2011
引用
收藏
页数:6
相关论文
共 50 条