Hyperspectral Image Classification Based on Local Gaussian Mixture Feature Extraction

被引:0
|
作者
Li Dan [1 ,2 ]
Kong Fanqiang [2 ]
Zhu Deyan [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Key Lab Space Photoelect Detect & Percept, Minist Ind & Informat Technol, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Coll Astronaut, Nanjing 210016, Jiangsu, Peoples R China
关键词
image processing; hyperspectral image; classification; feature extraction; Gaussian mixture model;
D O I
10.3788/AOS202111.0610001
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In order to further improve the classification accuracy of hyperspectral images, a classification method based on local Gaussian mixture feature extraction (LGMFEC) is proposed. The LGMFEC method first constructs a local neighborhood set for each sample based on the spatial structure of the hyperspectral image, and then extracts Gaussian mixture features from the local neighborhood set to fully characterize the spatial -spectral information and the related change information between them, and finally the local Gaussian mixture features arc integrated into a support vector machine (SVM) classifier containing a Riemann kernel function to complete the classification task. The experimental results of three sets of general hyperspectral datasets show that the classification performance of the LGMFEC method is better than several advanced classification methods to a large extent, especially when there arc fewer training samples.
引用
收藏
页数:12
相关论文
共 26 条
  • [1] Classification of hyperspectral data from urban areas based on extended morphological profiles
    Benediktsson, JA
    Palmason, JA
    Sveinsson, JR
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 480 - 491
  • [2] Hyperspectral Image Classification Using Dictionary-Based Sparse Representation
    Chen, Yi
    Nasrabadi, Nasser M.
    Tran, Trac D.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (10): : 3973 - 3985
  • [3] Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
    Chen, Yushi
    Jiang, Hanlu
    Li, Chunyang
    Jia, Xiuping
    Ghamisi, Pedram
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (10): : 6232 - 6251
  • [4] A New Spatial-Spectral Feature Extraction Method for Hyperspectral Images Using Local Covariance Matrix Representation
    Fang, Leyuan
    He, Nanjun
    Li, Shutao
    Plaza, Antonio J.
    Plaza, Javier
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06): : 3534 - 3546
  • [5] Hyperspectral Image Classification via Multiple-Feature-Based Adaptive Sparse Representation
    Fang, Leyuan
    Wang, Cheng
    Li, Shutao
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2017, 66 (07) : 1646 - 1657
  • [6] Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels
    Fang, Leyuan
    Li, Shutao
    Duan, Wuhui
    Ren, Jinchang
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12): : 6663 - 6674
  • [7] Multiple Feature Kernel Sparse Representation Classifier for Hyperspectral Imagery
    Gan, Le
    Xia, Junshi
    Du, Peijun
    Chanussot, Jocelyn
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (09): : 5343 - 5356
  • [8] Advances in Hyperspectral Image and Signal Processing A comprehensive overview of the state of the art
    Ghamisi, Pedram
    Yokoya, Naoto
    Li, Jun
    Liao, Wenzhi
    Liu, Sicong
    Plaza, Javier
    Rasti, Behnood
    Plaza, Antonio
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2017, 5 (04) : 37 - 78
  • [9] A TRANSFORMATION FOR ORDERING MULTISPECTRAL DATA IN TERMS OF IMAGE QUALITY WITH IMPLICATIONS FOR NOISE REMOVAL
    GREEN, AA
    BERMAN, M
    SWITZER, P
    CRAIG, MD
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1988, 26 (01): : 65 - 74
  • [10] A 3-D Gabor Phase-Based Coding and Matching Framework for Hyperspectral Imagery Classification
    Jia, Sen
    Shen, Linlin
    Zhu, Jiasong
    Li, Qingquan
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (04) : 1176 - 1188